Posts

Liderado por brasileiros, grupo descobre mecanismo causador da síndrome de Pitt-Hopkins, disfunção neuropsiquiátrica com características de TEA

Um grupo liderado pelo cofundador da Tismoo Biotech, o neurocientista brasileiro Dr. Alysson R. Muotri, da Universidade da Califórnia San Diego, nos Estados Unidos, em parceria com cientistas brasileiros da Universidade Estadual de Campinas (Unicamp), conseguiu reverter a evolução da síndrome de Pitt-Hopkins em modelos humanos de laboratório, além de descobrir o mecanismo causador dessa condição de saúde. A descoberta abre caminho para a possibilidade de tratamento tanto com medicamento como terapia gênica para a síndrome, que é um dos subtipos de Transtorno do Espectro do Autismo (TEA).

O trabalho científico foi publicado nesta segunda-feira, 2.mai.2022, na revista Nature Communications. “A terapia genética nunca foi testada para o autismo. Já imaginou reverter de vez todos os sintomas indesejados e comorbidades do autismo profundo? Nosso trabalho com a síndrome de Pitt-Hopkins é a porta de entrada para a melhores condições de vida e aumento do potencial de indivíduos autistas”, explicou Muotri.

Outro coordenador do trabalho, ao lado de Muotri, foi Fabio Papes, professor do Instituto de Biologia (IB-Unicamp): “Para a maioria dos casos de TEA, não se sabe qual gene causa a condição quando mutado. Assim é também para a maioria das doenças neuropsiquiátricas, como esquizofrenia, depressão e transtorno bipolar. A síndrome de Pitt-Hopkins, por sua vez, tem como origem uma mutação no gene TCF4. Mas, até então, não eram conhecidos seus mecanismos moleculares, ou seja, o que há de diferente nas células do sistema nervoso dos pacientes com a mutação”, contou Papes.

A pesquisa — que teve apoio, no Brasil, da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); e, nos EUA, do National Institutes of Health (NIH) e da Pitt-Hopkins Research Foundation (PHRF) — agora deve avançar para estudos pré-clínicos e clínicos. Os pesquisadores fecharam parceria com uma empresa especializada em terapia gênica, que está licenciando a tecnologia usada nos experimentos para que futuramente possa ser testada em humanos.

Síndrome de Pitt-Hopkins

Caracterizada por déficit cognitivo, atraso motor profundo, ausência de fala funcional e anormalidades respiratórias, entre outros, a síndrome de Pitt-Hopkins foi descrita em 1978, mas seu gene causador — chamado TCF4 — ficou conhecido apenas em 2007. A estimativa é de que a prevalência seja de 1 a cada 35 mil nascimentos.

Para esta pesquisa foram usados organoides cerebrais humanos (também conhecidos como minicérebros, estruturas desenvolvidas a partir de células-tronco reprogramadas dos próprios indivíduos) — tanto dos pacientes com a síndrome, como de seus pais —, já que a síndrome não se desenvolve em camundongos da mesma maneira que em seres humanos. Os minicérebros dos pais se desenvolveram normalmente; os das pessoas com a mutação no TCF4 cresciam menos — resultado da menor replicação das células causada pela síndrome e de um prejuízo da própria neurogênese —, além de terem neurônios em menor número e com menor atividade elétrica comparados aos dos pais, que eram os minicérebro de controle. Essa descoberta pode explicar muitas características clínicas desses pacientes.

São resultados semelhantes aos obtidos no primeiro estudo do cérebro de uma pessoa com síndrome de Pitt-Hopkins, quando foram analisados os tecidos post-mortem (de um paciente falecido por outras razões), o que reforça as conclusões obtidas com os minicérebros. “O acesso ao cérebro post-mortem foi essencial para validarmos alguns dos resultados obtidos com os organoides cerebrais. O fato de termos visto características semelhantes entre o organoide criado em laboratório e o cérebro mostra o quão relevante é essa tecnologia”, afirma Muotri.

Terapia gênica

Após desvendar quais alterações foram causadas pela mutação no gene TCF4, os pesquisadores buscaram maneiras de corrigi-la e, assim, realizar uma prova de conceito do que seria um possível tratamento.

Foram testadas três maneiras diferentes estratégias:

Alysson Muotri com 'minicérebros', organoides cerebrais — TismooA primeira foi utilizando a técnica de manipulação gênica conhecida como CRISPR-Cas9. Nesse contexto, uma versão recente da técnica foi empregada para fazer com que a cópia funcional do gene existente na célula disfuncional passe a expressar muito mais proteína, compensando a cópia afetada pela mutação causadora da síndrome de Pitt-Hopkins.

A segunda intervenção, usando uma técnica diferente, os cientistas inseriram uma cópia extra do gene, que passou a exercer normalmente as funções gênicas, compensando a cópia mutada.

“Nosso genoma tem duas cópias de cada gene. O que causa a síndrome de Pitt-Hopkins é o fato de uma das cópias do TCF4 não funcionar. Inserir uma terceira cópia ou fazer com que a única cópia funcional expresse mais proteína para compensar a defeituosa pode solucionar o problema”, diz o pesquisador.

Os organoides que sofreram as intervenções passaram a crescer normalmente e tiveram um aumento da proliferação das células progenitoras, que no cérebro dão origem a diferentes tipos de célula, inclusive neurônios.

“Ainda que esse distúrbio seja considerado raro, existem outros que envolvem mutações nesse mesmo gene. Portanto, o que descobrimos aqui pode, futuramente, ser aplicado para transtornos como a esquizofrenia, por exemplo”, afirma Papes.

Fármaco

Uma terceira estratégia foi a aplicação de uma droga usada em estudos com células tumorais. Conhecida pela sigla CHIR99021, ela ativa uma via de sinalização celular conhecida como Wnt, muito estudada no contexto do câncer e que os autores descobriram ser alterada também por mutações no gene TCF4.

Em células e organoides disfuncionais tratados com a droga houve melhora em alguns indicadores moleculares e aumento de tamanho (no caso dos organoides). Os resultados abrem caminho para o desenvolvimento de medicamentos similares que possam tratar a disfunção, uma vez que a CHIR99021 ainda não pode ser utilizada em seres humanos.

“Essa via tratada com a droga é apenas uma das alteradas pela mutação no gene TCF4. A vantagem de uma terapia gênica em relação a um tratamento farmacológico é que ela resolveria o problema na sua origem. No entanto, a busca por novas drogas também é promissora”, diz Papes.

O estudo original completo pode ser acessado no site da Nature, em: nature.com/articles/s41467-022-29942-w.

Edição genética de bebês na China usando Crispr-cas9 - cientistas da Tismoo se posicionam

Pesquisador chinês diz ter feito alteração genética em embriões com Crispr-cas9 para ficarem imunes ao HIV

O cientista chinês He Jiankui, de 34 anos, da universidade SUSTech (Universidade de Ciência e Tecnologia do Sul da China), em Shenzhen, na China, em 25 de novembro de 2018, anunciou (por um vídeo no YouTube) que havia editado o gene CCR5 em dois embriões humanos, com o objetivo de que os bebês não expressem um receptor para o vírus HIV. Ele diz serem duas meninas, gêmeas, que He chama de “Lulu” e “Nana”, nascidas poucas semanas antes do polêmico anúncio do cientista. A pesquisa foi duramente criticada em todo o mundo, um experimento considerado perigoso e prematuro. No dia 29 de novembro, as autoridades chinesas suspenderam todas as atividades de pesquisa de He, afirmando que “suas pesquisas violavam leis chinesas”.

Ele afirmou que os pais envolvidos não quiseram ser identificados ou entrevistados, e não disse onde eles moram ou onde o trabalho foi feito. A técnica utilizada foi com a enzima Crispr-cas9 (do inglês: Clustered Regularly Interspaced Short Palindromic Repeats — em português: repetições palindrômicas curtas agrupadas e regularmente interespaçadas), uma tecnologia que permite copiar e colar o DNA. Para quem quiser entender a técnica, há um vídeo do canal Ciência Traduzida (quem quiser ver uma versão reduzida, assista de 3:12s a 5:50s) e o site G1 também fez um infográfico bem interessante explicando a técnica.

Opiniões

Cientistas cofundadores da Tismoo se posicionaram a respeito da possível edição genética de embriões humanos e seus desdobramentos.

Para o cientista Roberto Hiroshi Herai, “a técnica Crispr-cas9 já demonstrou que é capaz, sem sombra de dúvidas, de modificar o genoma humano de forma eficiente, entretanto é possível que ela também introduza mutações indesejáveis, que é o que chamamos de variações off-target”, comenta o pesquisador e professor da Escola de Medicina da PUCPR (Pontifícia Universidade Católica do Paraná). “O fato de comprovadamente ainda não termos controle absoluto de como evitar essas possíveis variantes genéticas ocasionadas pelo efeito off-target da técnica Crispr-cas9, faz com que várias delas sejam potencialmente inseridas em regiões do genoma que ainda desconhecemos se há ou não função”, explicou Herai, que é doutor em genética e biologia molecular e fez pós-doutorado em genética de microorganismos e em medicina celular e molecular.

Alysson Renato Muotri, professor da faculdade de medicina na Universidade da Califórnia em San Diego (EUA), entende que toda tecnologia de ponta passa por um período crítico e o feito do pesquisador chinês aconteceria cedo ou tarde. “Na década de 50, transplante de células-tronco para tratar doenças do sangue tinham uma eficiência de 3% e muitos pacientes morriam durante o procedimento. Hoje, a eficácia é cerca de 90% e raramente letal. O mesmo aconteceu com transplante de órgãos, como coração, ou mesmo sangue e até mesmo na fertilização in vitro. Existe um custo a ser calculado na implementação de qualquer procedimento médico original. Por isso, fazemos testes pré-clínicos. Na década de 90, um garoto morreu de forma desnecessária ao participar de um ensaio clínico para terapia gênica. Esse incidente atrasou a ciência por mais de uma década e somente hoje em dia, sabemos como controlar melhor os vetores virais usados nesse tipo de terapia”, explicou ele.

“O caso da edição genética em bebês seria mais semelhante ao caso da terapia genética. Hoje em dia, temos como melhorar a eficácia das enzimas usadas no processo em laboratório a fim de evitar alterações no DNA indesejadas, mas isso leva tempo. O pesquisador chinês não usou a tecnologia mais avançada e segura. Essas alterações off-targets no genoma podem causar doenças ainda não antecipadas, como câncer no adulto. Além disso, temos o problema da transmissão da alteração genética pelas células germinativas. Os dois bebês chineses terão essas alterações presentes nos óvulos das duas meninas. Futuras gerações derivadas desses bebês também carregarão essas alterações e eventuais efeitos indesejados. Por isso mesmo, esse tipo de edição genética em embrião humano é, por enquanto, proibida nos EUA. No entanto, a edição genética em humanos será inevitável. Conforme iremos resolvendo as questões experimentais, a parte ética também vai se ajustando e, eventualmente, o procedimento entrará em clínica para alguns casos mais graves”, esclareceu Muotri, doutor em genética e com pós-doutorado em neurociência e células-tronco.

A professora de embriologia e genética da USP (Universidade de São Paulo) Patrícia Beltrão Braga, também se posicionou sobre a polêmica: “A edição genética de embriões humanos não é permitida por nenhum comitê de ética no mundo, pois a técnica precisa passar por alguns testes para que seja considerada segura para aplicação em seres humanos. Ainda é cedo para isso. Além do mais, a edição de um embrião sadio através da remoção de um gene não se justifica per se. No caso das gêmeas, o gene removido é  utilizado para a entrada do vírus HIV, o que não justifica a sua remoção, já que as chances de uma pessoa pegar o vírus são baixas se tomadas as devidas precauções. Além disso, existe medicação para combater os efeitos da infecção viral. Por outro lado, não sabemos as consequências a médio e longo prazo da remoção desse gene para o organismo humano”, opinou a cientista, que tem mestrado em virologia, doutorado em biologia molecular e fez pós-doutorado em biologia celular e outro em neurociência.

Mais informações

O caso ainda rende muitas controvérsias ao redor do mundo e outras informações podem ser obtidas online nos seguintes endereços:

Vídeo

Veja, abaixo, o vídeo explicativo sobre a técnica de edição de DNA, Crispr-cas9, do canal Ciência Traduzida: