Importante portal de ciência dos EUA destaca o trabalho e a trajetória do cofundador da Tismoo com organoides de cérebro em pesquisas de TEA

Por Hannah Furfaro, do Spectrum News,
(versão em português: Francisco Paiva Junior)

É quase pôr do sol, Alysson Muotri entra em uma sala pequena e desordenada em seu amplo laboratório no Sanford Consortium for Regenerative Medicine, em La Jolla (bairro da cidade de San Diego), Califórnia, nos Estados Unidos. Uma incubadora do tamanho de uma minigeladeira abriga moradores incomuns — e ele quer apresentá-los:

“Esta é a fábrica de mini-cérebros”, diz Muotri, abrindo um sorriso. Seu colega segura uma bandeja de vidro contra a luz, e esferas cor-de-rosa do tamanho de um caviar se destacam.

As esferas são bolas 3D de células humanas, chamadas organoides cerebrais [ou minicérebros] — e Muotri passa seus dias pensando em maneiras de usá-las para estudar a complexidade do cérebro humano.

As células dessas esferas formam camadas, exatamente como os cérebros humanos, e mostram atividade cerebral, passando sinais elétricos de uma célula para a outra. Mas eles não têm a complexidade anatômica de um cérebro real. Eles também não podem pensar ou sentir — pelo menos ainda.

Muotri induz as células-tronco a se desenvolverem em esferas de cerca de 1 milhão de células dos tipos vistos no cérebro. Ele pretende entender como esses “quase-cérebros” amadurecem — e como seus padrões de atividade combinam com os de um cérebro humano. Na medida em que o fazem, ele espera usá-los para desvendar o que dá errado no autismo e nas condições relacionadas — e encontrar pistas para tratamentos.

Muotri criou seus primeiros organoides cerebrais em 2014, com células-tronco do pai de um menino autista. Dois anos depois, ele descobriu que os organoides feitos com células-tronco de crianças autistas têm uma dinâmica de rede diferente daquela dos controles neurotípicos. Ele também fez organoides de células que carregam o DNA neandertal e outros infectados pelo Zika vírus. Em julho, ele ajudou a enviar os primeiros organoides cerebrais ao espaço. O objetivo final, diz ele, é criar organoides que possam aprender.

Alguns críticos afirmam que Muotri é propenso a superestimar seus dados, mas a maioria de seus colegas admira sua determinação em forçar os limites dessa tecnologia, mesmo quando esse trabalho é controverso.

“Seu nome carrega muito peso na tentativa de fazer coisas com organoides que ninguém ainda fez”, diz Ferid Nassor, professor assistente de células-tronco e engenharia genética no Institut Sup’Biotech de Paris, na França. “Ele está realmente tentando forçar os limites do que pode ser feito”.

O otimismo de Muotri conquistou muitos céticos, de fato — e lhe rendeu vários prêmios e muitos milhões de dólares em doações.

Primeira luz:

Muotri estava preocupado em como as coisas funcionam desde sua infância. Ele se lembra de seu primeiro “pensamento profundo”, por volta dos 7 anos, quando tentou descobrir como funciona uma lâmpada: “minha ideia era que a lâmpada não estava lá para enviar luz, mas para sugar a escuridão”, diz ele.

Quando adolescente, em São Paulo, muitas vezes mergulhava na natureza, capturando vaga-lumes em jarras para “ter luz para sempre”. Ele criou uma sequência de fotos em time -lapse vaga-lumes piscando suas luzes — um dos muitos “projetos” que o fizeram receber o apelido de “o cientista” da família.

Como estudante de graduação na Unicamp (Universidade de Campinas), ele se destacou em biologia molecular, embora estivesse sempre interessado no cérebro — e na memória em particular. Mas o Brasil não era um celeiro de pesquisas em neurociência, então Muotri estudou câncer para seu trabalho de pós-graduação na USP (Universidade de São Paulo), aprendendo os fundamentos da biologia celular.

Enquanto estava na universidade, Muotri tentou desenvolver uma terapia genética tópica para o xeroderma pigmentoso, uma doença de pele rara que causa extrema sensibilidade à luz solar e muitas vezes leva ao câncer. O projeto exigia a confecção de modelos de pele em um prato. Ele viajou para o laboratório do biólogo Alain Sarasin na França em 2001 para aprender uma técnica que envolve a mistura de células-tronco da pele com “células alimentadoras” que fornecem suporte à medida que as células-tronco se multiplicam e produzem camadas de pele.

Mas ele logo percebeu que, se quisesse seguir a neurociência, precisaria deixar o Brasil completamente. Em 2002, como pesquisador de pós-doutorado, ele se juntou à equipe de Fred Gage, em San Diego, na Califórnia (EUA), um papa da neurociência do desenvolvimento.

“Ele gosta de estar lá fora no limite”, diz Gage, presidente do Instituto Salk de Estudos Biológicos, em La Jolla (San Diego), na Califórnia (EUA).

Dores crescentes:

A transição da pele para o cérebro teve uma curva de aprendizado íngreme para Muotri. Além disso, as células-tronco embrionárias estavam em oferta limitada, assim como o financiamento para pesquisa, por causa de uma lei federal de 2001 que proibia fundos públicos para estudos usando essas células.

No laboratório de Gage, o trabalho de Muotri foi confinado a uma sala especialmente equipada, apoiada por doadores privados. O plano era transformar células-tronco em neurônios, mas isso não era fácil.

“Ninguém sabia exatamente como fazer isso”, diz Muotri. Simplesmente manter as células-tronco vivas era um desafio.

Após três anos de esforços, Muotri relatou em 2005 que ele e seus colegas haviam transplantado células-tronco embrionárias humanas para o cérebro de embriões de camundongos. Eles encontraram neurônios humanos em funcionamento integrados em redes no cérebro dos camundongos recém-nascidos. [1]

Na pressa, Muotri perdeu um passo: não pediu a aprovação do conselho de revisão institucional do Instituto Salk, que examina a pesquisa humana em busca de danos potenciais. Ele recebeu uma advertência.

“Esta foi a minha primeira conexão com essas questões éticas”, diz Muotri. “Aprendi duas lições: havia muitas pessoas irritadas com esses experimentos e muitas pessoas felizes com eles”.

Entre as pessoas felizes, estava o biólogo celular Larry Goldstein, que estava convencido de que o trabalho de Muotri iria acelerar a área de células-tronco.

“Eu bati na trave algumas vezes; conheço muitos cientistas e sei quais são fora do comum em sua criatividade, motivação e seus insights — [Muotri] é um deles ”, diz Goldstein, diretor científico do Sanford Consortium for Regenerative Medicine.

Três anos depois, Goldstein recrutou Muotri para se juntar a ele na Universidade da Califórnia, em San Diego (EUA), onde ele é professor.

Spectrum News: os planos audaciosos com minicérebros do pesquisador de autismo Alysson Muotri — Tismoo

Planos arrojados: enquanto alguns debatem os méritos de suas ambições científicas, Alysson Muotri gosta de estar no limite.

Laços familiares:

Em seu novo laboratório, Muotri se afastou das células-tronco embrionárias e de seus problemas éticos, para um tipo chamado “células-tronco pluripotentes induzidas”, que são feitas usando pele e outras células do corpo como ponto de partida.

Em 2010, ele relatou que as células-tronco produzidas a partir das células da pele de pessoas com síndrome de Rett, uma condição relacionada ao autismo, geram menos neurônios do que as pessoas comuns. Uma entrevista na televisão sobre esse trabalho chamou a atenção de Andrea Coimbra, uma brasileira cujo filho, Ivan, então com 5 anos, tem autismo severo.

“Decidi dizer-lhe que passei a viver melhor depois de conhecer o seu trabalho e a sua pesquisa”, lembra Andrea. Após trocar e-mails por um ano, Andrea e Alysson se conheceram em uma conferência científica no Brasil — e se apaixonaram. Eles se casaram em 2016.

Ao conhecer Ivan, Muotri se tornou cada vez mais impelido em encontrar maneiras de traduzir seu trabalho em terapias para o autismo.

Organoides e células-tronco não são as únicas ferramentas que Muotri está usando para estudar o autismo e buscar terapias. Em trabalho não publicado, ele encontrou diferenças na atividade neuronal em organoides cultivados a partir de células com a mutação da síndrome de Rett. Após quatro meses de crescimento, quando os organoides são do tamanho de sementes de mostarda, suas células exibem um padrão elétrico semelhante ao observado em bebês prematuros [2]. Isso sugere, diz ele, que os organoides são bons modelos de desenvolvimento humano.

Alguns pesquisadores dizem que esta conclusão é precipitada.

“Encontrar atividade intermitente nas redes neurais não significa que seja um modelo de cérebro prematuro”, diz o neurofisiologista Sampsa Vanhatalo, que liderou o trabalho com bebês prematuros.

Muotri não deixa as críticas negativas o abalar. Não só isso, ele está de olho em um projeto ainda mais ambicioso: criar um organoide que possa aprender.

A idéia de um aprendizado organoide ou de ter consciência, todavia, provoca ceticismo de alguns especialistas.

Sugerindo que as esferas de células têm a capacidade de recapitular qualquer tipo de pensamento complexo passa dos limites, diz a especialista em organoides Flora Vaccarino, professora de neurociência na Universidade de Yale (EUA).

Mas outros dizem que estabelecer tais metas força os limites da ciência de maneira a melhorá-la.

“À medida que a ciência avança, deixa perguntas que fazem as pessoas pensarem, e fazerem uma pausa”, diz Hongjun Song, professor de neurociência da Universidade da Pensilvânia (EUA). “Isso é muito bom para toda a área”.

Enquanto outros debatem os méritos de sua ambição, Muotri está avançando. Um vídeo armazenado em seu celular apresenta um robô de 1 metro de largura, envolto em fios de neon, indo e voltando pela sala. Invisível, o manipulador de marionetes biológico do robô direciona todos os seus movimentos: os membros do robô se movem comandados por um computador que, por sua vez, recebe sinais de um minicérebro em uma incubadora.

O robô pisa aleatoriamente, muitas vezes esbarrando nas paredes, sugerindo que os sinais não são coordenados. Algum dia, diz Muotri, ele criará organoides que produzem sinais significativos. Com o feedback sensorial do robô (por exemplo, ao atingir um obstáculo), o organoide pode alterar seus padrões de disparo — “aprender”, isto é, direcionar o robô para desviar do obstáculo.

“Talvez ele tenha alguma carta na manga”, diz Nassor. “Eu acredito que se alguém puder realmente fazer algo assim, será no laboratório do Muotri”.

 

Tradução do original “Autism researcher Alysson Muotri’s audacious plans for brain organoids“, em inglês, publicado por HANNAH FURFARO na Spectrum News (EUA), em 12.agosto.2019.


Referências:

  1. Muotri A.R. et al. Proc. Natl Acad. Sci. 102, 18644-18648 (2005) PubMed 
  2. Stevenson N.J. et al. Sci. Rep. 7, 12969 (2017) PubMed

Missão CRS 18 leva diversos experimentos científicos, entre eles, a pesquisa que pode contribuir para o autismo

Nesta quinta-feira (25.jul.2019), a SpaceX lançou, pela 18º vez, um foguete rumo à Estação Espacial Internacional (ISS, na sigla em inglês para International Space Station). Nesta oportunidade, porém, há algo muito valioso para a pesquisa científica a respeito de autismo e outros condições neurológicas: um experimento com minicérebros humanos do laboratório do neurocientista brasileiro Alysson Muotri, professor da faculdade de medicina da Universidade da Califórnia em San Diego (UCSD) e cofundador Tismoo. Segundo Patrick O’Neill responsável pela comunicação da ISS, “esta será a primeira vez que uma carga com organoides cerebrais será lançada para a Estação Espacial Internacional”. O lançamento estava previsto para o dia anterior, mas foi adiado por más condições climáticas (saiba mais neste nosso artigo).Cofundador da Tismoo envia minicérebros para o espaço em missão da Nasa e SpaceX

O foguete foi lançado precisamente às 19h01 (horário de Brasília), conforme agendado, e, no vídeo abaixo, é possível assistir desde minutos antes do lançamento e todos os estágios até a cápsula espacial Dragon entrar em órbita. O fantástico sistema criado pela empresa de Elon Musk, a SpaceX, de fazer o foguete Falcon 9 retornar à sua base, no Cabo Canaveral, na Flórida (EUA), é de impressionar. Isso sem falar que o Falcon 9 foi utilizado apenas 2 meses atrás, na 17ª missão para a ISS e, em tão pouco tempo, já pode ser reaproveitado. Com mais este feito, a SpaceX acumula agora 44 recuperações bem sucedidas de um primeiro estágio do foguete reutilizável.

Foguete Falcon 9 da SpaceX com minicérebros de pesquisa do cofundador da Tismoo, Alysson Muotri — Tismoo

Foguete Falcon 9, na base da Nasa no Cabo Canaveral, Flórida (EUA), a poucos minutos de ser lançado pela SpaceX para a Estação Espacial Internacional (ISS) com minicérebros da pesquisa do neurocientista brasileiro Alysson Muotri, cofundador da Tismoo.

Mais de 250 pesquisas

O vídeo mostra todas as fases da volta do foguete, assim como a continuidade da missão CRS 18 com a Dragon — levando mais de 2,2 toneladas de equipamentos, que serão usados em 250 pesquisas diferentes — rumo à Estação Espacial Internacional. O conexão com a ISS aconteceu na manhã deste sábado (27), às 13h01 (horário de Brasília) — e foi transmitida ao vivo pelo canal da Nasa no Youtube.

A cápsula Dragon já foi usada em outras duas viagens para o espaço, em 2015 e 2017. Essa é a primeira vez na história que uma mesma cápsula viaja três vezes para fora da Terra.

Outra carga a bordo é o slime da Nickelodeon, com os astronautas gravando vídeos de como a “geleca” se move na microgravidade. Fora esta brincadeira, a missão leva outros experimentos científicos importantes, não só os minicérebros do Muotri Lab: há uma pesquisa de tecido orgânico para uso em bioimpressão 3D, experimentos para a fabricação de materiais para pneus, e até mesmo um experimento criado por estudantes brasileiros para testar o filtro de barro brasileiro no espaço, contando com o carvão ativo como uma alternativa ao atual uso de iodo para a filtragem da água na ISS. 

Leia mais sobre a missão e os minicérebros no nosso artigo “Minicérebros no espaço? Pra quê?“.

[Atualizado em 27/07/2019, 13h44 com informações sobre a  conexão da cápsula Dragon à ISS]

Pesquisa confirma que autismo é quase totalmente genético; 81% é hereditário — Tismoo

Com mais de 2 milhões de indivíduos, de 5 países diferentes, estudo reforça a importância de exames genéticos especializados para autistas

Um estudo publicado pelo JAMA Psychiatry no último dia 17 de julho (2019) confirmou que 81% dos casos de autismo têm causa genética hereditária. O trabalho científico, com 2 milhões de indivíduos, de cinco países diferentes, sugere ainda que de 18% a 20% dos casos tem causa genética somática (não hereditária). E o restante, aproximadamente de 1% a 3%, devem ter causas ambientais, pela exposição de agentes intrauterinos — como drogas, infecções, trauma durante a gestação.

“O estudo valida as estimativas prévias feitas com gêmeos. Só iremos entender o autismo e ajudar os autistas através dos estudos genéticos”, diz o neurocientista Alysson Muotri, cofundador da Tismoo e diretor do programa de células-tronco da Universidade da Califórnia em San Diego (EUA).

As descobertas confirmam os resultados de um grande estudo de 2017 com irmãos gêmeos e não gêmeos na Suécia, que sugeriu que cerca de 83% do risco de autismo é herdado. Um outro estudo, de 2010, também na Suécia e também em gêmeos, relatou que esses fatores contribuem para cerca de 80% do risco de autismo. Todos esses estudos são referenciados pela Tismoo, que desde sua fundação percebeu a importância da genética para o Transtorno do Espectro do Autismo (TEA).

Para a cientista Graciela Pignatari, “apesar de vários questionamentos acerca da importância dos exames genéticos no autismo, o que estamos cada dia observando mais é que a genética é um fator muito relevante e que a herdabilidade é prevalente, embora a realização dos exames genéticos dos pais ainda seja pouco realizado”, disse a cofundadora da Tismoo, que ainda completou: “Além disso, saber se a alteração foi herdada ou não pode nos nortear em relação ao prognóstico deste transtorno”, finalizou.

“É o estudo com maior número de participantes e que confirma a importância da genética envolvida no autismo, entretanto este estudo não evidenciou de forma clara quais fatores ambientais poderiam ser importantes para contribuir com o fenótipo do autismo, bem como não levou em consideração fatores como infecções na gestação”, explica Patrícia Beltrão Braga, professora do departamento de microbiologia do Instituto de Ciências Biomédicas da USP (Universidade de São Paulo).

Mais de 2 milhões

Foram avaliados registros nacionais de saúde, de 1998 a 2007, de crianças nascidas na Dinamarca, Finlândia, Suécia e Austrália, além de nascidos de 2000 a 2011, em Israel.

O estudo, ao todo, abrangeu 2.001.631 indivíduos, incluindo 22.156 com diagnóstico de autismo. A maioria das crianças da análise principal vive na Dinamarca, na Finlândia ou na Suécia. Os pesquisadores incluíram as da Austrália Ocidental e Israel separadamente.

O estudo completo, que reforça ainda mais os benefícios de exames genéticos para autistas, pode ser acessado em: https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2737582.

Entenda qual o objetivo do neurocientista Alysson Muotri enviar organoides de cérebro para fora do planeta

No dia 21 deste mês (julho de 2019), o neurocientista brasileiro Alysson Muotri, cofundador da Tismoo e diretor do programa de células-tronco da Universidade da Califórnia em San Diego (EUA), vai enviar minicérebros humanos para a Estação Espacial Internacional (ISS, na sigla em inglês) para auxiliar sua pesquisa com autismo entre outras questões. Os organoides serão enviados na próxima missão logística da SpaceX para o espaço, que decola do Cabo Canaveral, na Flórida (EUA), com o nome de BOARDS (Brain Organoid Advanced Research Developed in Space) com a designação UCSD-ORG01 da NASA. Saiba mais sobre minicérebros criados a partir de células-tronco humanas neste link.

Ao contrário do que acontece no laboratório de Alysson, o Muotri Lab, onde há condições ideais para o crescimento dos minicérebros, no espaço eles ficarão armazenados em frascos dentro de cubos autônomos de pouco mais de 10 por 10 centímetros, que possuem incubadoras especializadas alimentadas por bateria.Tubos de controle remoto alimentam os organoides com uma solução de nutrientes. Os astronautas planejam instalar (leia-se: “ligar na tomada” e pronto!) os cubos em um laboratório permanente na Estação Espacial Internacional. “Os cubos são autônomos, mas nós conseguimos interferir por controle remoto. Se algo der errado, temos a possibilidade de corrigir algumas coisas”, explicou o neurocientista.

Projetados por uma empresa com sede no Kentucky (EUA), chamada Space Tango, especializada em criar laboratórios em miniatura, os cubos têm micro câmeras para transmitir vídeos do crescimento dos organoides para a Terra em tempo real, além de uma série de outros sensores como temperatura e humidade.

Um grupo de minicérebros crescerá no Muotri Lab, para, quando os organoides retornarem à Terra, em agosto, os cientistas possam analisar sua expressão gênica e comparar os resultados com os dos organoides que cresceram por aqui. “Na primeira missão, eles ficarão 30 dias, quando voltam na mesma nave e parte dos cubos serão reaproveitados. Em futuras missões, queremos mantê-los no espaço por até um ano”, explicou Alysson.

Minicérebros no espaço? Pra quê? - NASA, ISS, SpeceX e UCSD / Alysson Muotri / Estação Espacial Internacional - TismooObjetivos

O projeto tem, em resumo, três grandes objetivos, segundo o próprio Alysson explica (veja vídeo abaixo).

O primeiro é desenvolver uma plataforma autônoma para manter esses organoides de cérebro crescendo sem intervenção humana, o que ajudará muito no trabalhos de testes para descoberta de novos medicamentos para várias condições, como o autismo. A segunda meta é descobrir se os minicérebros resistem à microgravidade. “No espaço, sabemos que ele estarão crescendo de uma forma diferente. Seria isso uma vantagem ou uma desvantagem para o desenvolvimento do cérebro humano?”, questiona o neurocientista.

O último — mais ambicioso — objetivo é entender os impactos da microgravidade numa futura colonização do espaço pelos seres humanos. “Entendendo um possível impacto negativo, podemos trabalhar isso aqui em Terra e preparar o cérebro humano para nascer e viver no espaço”, resume Alysson Muotri. Os detalhes do experimento também podem ser vistos no site da NASA (a agência espacial do governo dos EUA).

Tentar cultivar organoides no espaço é, na verdade, um grande avanço. Os organoides do cérebro podem realmente fornecer informações valiosas sobre as células-tronco que podem aparecer quando você tem um bebê lá”, disse, ao Spectrum News, Ferid Nassor, professor assistente de células-tronco e engenharia genética no Institut Sup’Biotech de Paris (França).

A missão é a primeira de 10 outras que estão planejadas, que, juntas, podem ajudar os cientistas a responder questões fundamentais sobre o desenvolvimento do cérebro — e, em última análise, descobrir se as pessoas podem se reproduzir com segurança fora da Terra.

Algumas pesquisas no espaço, como o famoso estudo da NASA sobre os astronautas gêmeos Scott e Mark Kelly, sugeriram que a microgravidade pode ter efeitos sutis na expressão gênica. Pesquisadores também descobriram que as células-tronco de animais se multiplicam mais rapidamente no espaço do que na Terra e estão investigando se a radiação cósmica altera seu desenvolvimento.

BOARDS - Minicérebros no espaço? Pra quê? - NASA, ISS, SpeceX e UCSD / Alysson Muotri / Estação Espacial Internacional - TismooBrasil no espaço

Os minicérebro vão na missão logística da SpaceX que deverá ser lançada às 23h32 UTC (20h32 no fuso-horário de Brasília) do dia 21 de julho de 2019. O lançamento da missão CRS-18 com o veículo de carga Dragon SpX-18, levado pelo foguete Falcon 9-074 (B1056.2) será a partir do Complexo de Lançamento SLC-40 da Estação da Força Aérea (AFS) do Cabo Canaveral, nos Estados Unidos. Além da carga logística para a tripulação permanente da ISS, a bordo da Dragon SpX-18 estarão dois pequenos satélites: RFTSat e MakerSat-1.

E tem mais coisas de brasileiros que estarão nessa mesma missão: apoiados pela NASA e pela SpaceX, dois projetos de estudantes brasileiros — um de São Paulo e outro de Santa Catarina — para testar interações físicas e químicas na Estação Espacial Internacional. Ambos os projetos, participantes do programa Student Spaceflight Experiments Program (SSEP) do Centro Nacional para Educação Científica para Terra e Espaço, podem contribuir para o futuro da vida humana fora da Terra: um quer melhorar a proteção de seres humanos da radiação em construções no espaço e outro tem como objetivo construir um sistema mais apurado para filtração de água para consumo humano em espaçonaves.

Vídeos

Em vídeo, neurocientista brasileiro explica o que é exatamente cada um dos exames genéticos

Em visita ao escritório da Tismoo no Brasil, o neurocientista Alysson Muotri, cofundador da startup, explica cada um dos três exames genéticos oferecidos pela Tismoo atualmente: T-Array (CGH-SNP-Array genômico), T-Exom (sequenciamento completo do exoma) e T-Gen (sequenciamento completo do genoma).

Alysson, que é professor da Faculdade de Medicina da Universidade da Califórnia em San Diego (EUA), fez questão de falar sobre uma das principais dúvidas de quem entra em contato com a Tismoo: “qual o melhor exame?”. Assista à resposta.

E logo depois, tem um spoiler: um vídeo dele falando sobre a ação que a Tismoo irá lançar na próxima semana. Podia contar? 🤔

Leia também os artigos traduzidos da Spectrum News (EUA) sobre a importância dos exames genéticos (neste link) e o estudo recente que aponta a importância do seuqneciamento do genoma completo (neste link).

Exames genéticos para autismo

Medicina personalizada

Estudo reforça importância do sequenciamento do genoma completo em autistas — Tismoo

Trabalho científico analisou mais de 7 mil genomas de autistas e seus familiares

Pesquisadores descobriram, com o uso de inteligência artificial, mutações genéticas em regiões não codificantes de proteínas que podem resultar no Transtorno do Espectro Autista (TEA). Foram analisados o sequenciamento do genoma completo em 1.790 famílias que tinham pelo menos um indivíduo diagnosticado com TEA, totalizando 7.097 genomas. A ideia foi tentar relacionar mutações nas regiões não codificantes com o autismo, utilizando um modelo computacional que consegue predizer os efeitos regulatórios específicos e impactos dessas mutações. O trabalho, publicado na Nature dia 27 de maio de 2019, liga alterações genéticas em regiões não codificantes a condições do neurodesenvolvimento.

Trocando em miúdos, o estudo mostrou a importância do sequenciamento do genoma completo para pessoas com autismo. O sequenciamento do exoma completo já era indicado por muitas associações médicas de países desenvolvidos, como nos Estados Unidos, como uma metodologia de auxílio no diagnóstico do TEA. Porém, o exoma cobre apenas cerca de 2% do genoma humano. No passado, o restante era considerado “lixo”, informação sem importância embora já fosse sabido que essas regiões eram importantes em questões regulatórias. Este estudo vem mostrar o contrário, que essas outras regiões do genoma (regiões intergênicas, não codificantes de proteínas), que ficam nos demais 98%, têm relevância para o risco associado ao TEA. Estes resultados sugerem que essa classe de mutações também podem estar associadas a outras complexas condições de saúde, especialmente em casos sem causa conhecida.

Genoma

“A Tismoo, que sempre prezou pelo potencial científico desde a sua fundação, viu um potencial nessas regiões e oferece o sequenciamento do genoma completo (T-Gen) desde que abriu suas portas, em 2016, sabendo dessa importância, hoje comprovada por este estudo científico. No entanto, sabe-se que mais estudos são necessários para que essas informações sejam utilizadas na rotina clínica”, explicou a cientista Graciela Pignatari, cofundadora e diretora executiva da Tismoo.

As mutações nas regiões intergênicas, não codificadoras, estão associadas à regulação gênica alterada em pessoas com autismo. Além disso, as mutações afetam a expressão gênica no cérebro e outros genes já ligados ao autismo, como os responsáveis pelo desenvolvimento e migração de neurônios, mostrando sobretudo a importância de mais estudos nessas regiões.

O estudo científico, na íntegra, pode ser visto em: https://www.nature.com/articles/s41588-019-0420-0.

Austrália autoriza teste de medicamento para Síndrome de Rett — Tismoo

O teste clínico foi anunciado pela associação da síndrome no país e pelo laboratório Anavex, responsável pelo fármaco

Cerca de 30 pacientes com Síndrome de Rett participarão de um teste clínico (trial) do medicamento “Anavex 2-73”, que foi aprovado recentemente pelo Comitê Australiano de Ética em Pesquisa Humana. O estudo, um teste clínico duplo cego, randomizado, controlado por placebo, foi anunciado nesta semana — na tarde de 8 de maio de 2019 — pela Associação de Síndrome de Rett da Austrália e a biofarmacêutica Anavex Life Sciences Corp., responsável pelo medicamento.

Batizado de “Avatar”, o teste — em fase 2 — está programado para iniciar-se neste trimestre e pode durar até sete semanas, e deverá avaliar a segurança e eficácia da formulação oral da droga, em uma dose única por dia. Os participantes do estudo também poderão participar de uma extensão do estudo, que será aberto (open-label), para continuarem recebendo a medicação.

Rett

“A Síndrome de Rett, que é observada quase exclusivamente em mulheres, é um distúrbio genético em que o cérebro não amadurece da maneira esperada. Para a maioria das crianças afetadas, seu desenvolvimento inicial parece normal, mas depois diminui ou, de repente, paralisa”, explicou Claude Buda, presidente da RSAA — Rett Syndrome Association of Australia (em português: Associação de Síndrome de Rett da Austrália).

Em estudos anteriores, a droga resultou em melhorias em modelos animais, com propriedades anticonvulsivantes, antiamnésicas, neuroprotetoras e antidepressivas. Além de Síndrome de Rett, o medicamento também foi usado com bons resultados em outras condições que envolvem o sistema nervoso central, como num ensaio pré-clínico para Mal de Alzheimer.

A Fundação Michael J. Fox, voltada a pesquisas para Mal de Parkinson, premiou a Anavex — que desenvolve tratamentos para doenças neurodegenerativas e condições de saúde do neurodesenvolvimento — com uma bolsa de pesquisa que financiou totalmente um estudo pré-clínico utilizando esta mesma droga para o tratamento da doença.

“Estamos orgulhosos de ter feito parceria com a Rett Syndrome Association of Australia no projeto do estudo Avatar e entusiasmados por termos dado um passo importante no avanço do desenvolvimento de um possível tratamento para a Síndrome de Rett que pode beneficiar as famílias e indivíduos que vivem com esta condição de saúde”, disse Christopher U Missling, CEO da Anavex, no comunicado oficial no site da biofarmacêutica.

Associação

Saiba mais a respeito da Síndrome de Rett, causada por uma mutação no gene MECP2, e da pesquisa do neurocientista brasileiro Alysson Muotri — um dos cofundadores da Tismoo — sobre esta síndrome neste nosso artigo.

No Brasil, a maior associação relacionada à síndrome é a Abre-te – Associação Brasileira de Síndrome de Rett, fundada em 1990. Mais informações em Abrete.org.br. Nos Estados Unidos, a maior é a International Rett Syndrome Foundation (RettSyndrome.org), com sede em Cincinnati.

O site do teste clínico é rettsyndrometrial.com.

 

Pais de crianças com mutações raras ligadas ao autismo estão se unindo para apoiar e unir forças com cientistas, acelerando o ritmo das pesquisas

Spectrum News é um site dos EUA que dedica-se a cobrir as questões do autismo sempre com um embasamento científico. Nas últimas semanas (desde dia 30.jan.2019), eles publicaram uma série de três reportagens sobre genética clínica e autismo. Segue aqui a tradução livre do terceiro texto, cujo original (em inglês) pode ser acessado neste link. Este material, como sempre fazemos, está cheio de links referenciando os estudos científicos, quem são os especialistas citados e o que é cada exame genético. Leia também nossa tradução do primeiro e segundo textos (tem links no final).

Por Jessica Wright
(versão em português: Francisco Paiva Junior)

Parece uma sexta-feira qualquer no Legoland Discovery Center [um verdadeiro parque de diversões da Lego], em Grapevine, no estado do Texas [EUA]: cerca de meia dúzia de crianças fazem fila para os passeios cheio de cores ou posam com figuras de Lego em tamanho natural. Eles têm uma notável semelhança um com o outro — com mechas de cabelos cacheados, olhos arregalados e largos sorrisos de lábios finos. Alguns vieram de longe, como da Austrália, e seus pais se abraçam calorosamente ao se encontrarem.

Quando o grupo se dirige para almoçar no café Rainforest, nas proximidades, Jasey Miller, uma menina de 12 anos, hesita na entrada: o restaurante está enfeitado com videiras falsas e animais robôs barulhentos e gesticulando. Percebendo sua hesitação, Abby Ames, de 15 anos, a pega pelo braço e a leva para dentro.

Só que não é uma reunião de família — Jasey e Abby se encontraram apenas uma vez antes, dois anos atrás. Mas as conexões entre eles são mais profundas do que aquelas que unem muitos parentes de sangue. Jasey, a irmã de Abby, Bridget, de 10 anos, e uma criança em cada uma das 19 famílias aqui carregam uma mutação em um gene chamado PACS1.

“Estou com o meu povo”, diz Paulette Torres-Chase, cuja filha, Alondra, de 5 anos, também tem a mutação. “Todo mundo que vem aqui é da família: não importa se seu filho está gritando; Não importa se seu filho está sentado sozinho em um canto — estamos juntos”.

As crianças com a mutação no PACS1 têm algum tipo de atraso no desenvolvimento e características de autismo; cerca de metade delas tem um diagnóstico de autismo. Muitos também têm convulsões, problemas motores e hipersensibilidade sensorial.

Em 4 de abril, sabia-se que apenas 110 pessoas em todo o mundo tinham a síndrome PACS1 — ou pelo menos são as identificadas neste grupo, PACS1 Smiles. O grupo saiu de uma página no Facebook, que começou em 2014, com apenas cinco famílias. Dois anos atrás, duas famílias decidiram passar férias juntos na Virgínia. Eles sugeriram, em tom de brincadeira, que os outros deveriam se juntar a eles: Isso levou ao primeiro encontro com 14 famílias na Virgínia. O da Legoland neste final de semana de março [de 2019] é o segundo encontro do grupo e conta com 81 pessoas.

Dezenas de grupos semelhantes foram formados por famílias de pessoas que têm mutações em uma sopa de letrinhas de genes do autismo: SYNGAP1, DYRK1A, SCN2A e ADNP. Os membros do grupo se apoiam mutuamente, compartilhando dicas duramente conquistadas sobre como viver sob as condições que as mutações causam. Ao longo do caminho, eles também estão ajudando projetos de pesquisa e fornecendo aos cientistas uma riqueza de informações.Como as famílias estão acelerando os estudos dos genes do autismo — Tismoo — Spectrum News

Às vezes, essa informação equivale a uma curiosidade compartilhada — como o fato de muitas crianças com mutação DYRK1A se sentarem da mesma maneira, reclinadas com as mãos atrás da cabeça. Outras vezes, isso levou a avanços significativos, incluindo a descoberta de que as mutações no SYNGAP1 têm um efeito embotador nos neurônios sensoriais — [que apagam e/ou reduzem a atividade neural].

Os cientistas às vezes realizam essas reuniões para fazer avaliações no local e recrutar participantes do estudo. “Observar muitas crianças com a mesma condição genética permite aos pesquisadores a chance de detectar coisas que normalmente passariam batido”, diz Stephan Sanders , professor assistente de psiquiatria da Universidade da Califórnia, em San Francisco.”Sentados em uma sala por dois dias, pensando em nada mais, a não ser essas crianças e seus pais e os problemas que eles têm, e vendo-os em primeira-mão, dá-lhe uma visão que você não consegue de outra maneira.”

Os grupos familiares, por sua vez, estão aumentando a conscientização e os recursos para apoiar a pesquisa e dar aos cientistas acesso a essas pessoas com mutações raras. “Nós podemos ter acesso a todos os pacientes, por isso temos todos em um quarto”, diz Sandra Sermone, que fundou um grupo familiar para a síndrome de ADNP depois que seu filho Tony foi diagnosticado.“Essa parte que estou aprendendo é a mais importante — reunir todas essas famílias e motivá-los coletivamente a ajudar na pesquisa.”

“Há muito mais confiança nessas organizações, pois todas compartilham uma experiência em comum.” (Evan Eichler)

Odisséia genética

No momento em que a maioria das famílias chega a uma reunião, enfrenta uma odisséia diagnóstica complicada. As histórias muitas vezes são semelhantes: anos indo a médicos e especialistas, sem respostas claras ou soluções para seus problemas. A maioria das pessoas acaba por obter um diagnóstico por meio do sequenciamento do exoma — um exame que lê a maioria dos genes no exoma de uma pessoa [cerca de 2% de todo o genoma]. O método raramente é coberto pelo plano de saúde nos Estados Unidos, no entanto, muitas famílias se inscrevem em estudos para obter acesso a isso. Kerri Ames, a mãe de Bridget, dirigiu por mais de mil quilômetros de sua casa em Massachusetts para um médico na Geórgia que concordou em fazer o exame. Uma família australiana enviou o sangue de seu filho para a Alemanha e pagou 3.000 dólares australianos (cerca de 2.000 dólares americanos, [pouco menos de R$ 8.000]); um laboratório no Texas fez um orçamento quatro vezes maior.

Até os últimos anos, no entanto, um resultado genético não vinha com muitas respostas. Monica Weldon fez um empréstimo de US$ 13.000 em 2012 para pagar o exame, que revelou que seu filho Beckett tem uma mutação no SYNGAP1. Mas os médicos disseram a ela que por Beckett ser apenas a sexta pessoa conhecida no mundo com uma mutação naquele gene, eles não sabiam quase nada a respeito disso. Weldon recorda como estava no meio do trânsito, na volta pra casa: “Nunca me senti tão sozinha e indefesa em toda a minha vida”. Ela criou um grupo no Facebook para pais na mesma situação, que agora os geneticistas recomendam a outras famílias.

Frederique Smeets, que iniciou o grupo PACS1 no Facebook, teve uma experiência semelhante. Seu filho, Siebe, de 17 anos, foi diagnosticado em 2011 em um centro na Holanda. Os médicos notaram uma impressionante semelhança entre ele e um menino belga que visitou a clínica. Os médicos sequenciaram os exomas de ambos os meninos e descobriram que os dois carregam a mesma mutação: no PACS1.

A família belga não estava interessada em compartilhar suas informações com outras famílias. Mas dois anos depois, Smeets recebeu um telefonema. Médicos em Cincinnati, Ohio, descobriram outra criança que carrega a mesma mutação: Jasey. “Eu me lembro do dia em que o médico estava me ligando sobre Jasey. Eu estava chorando; Foi muito emocionante conversar com outra mãe ”, diz Smeets. Ela começou a receber famílias de todo o mundo em sua casa.

Na reunião no Texas, os crachás revelam a ordem de diagnóstico das crianças. Siebe, que é o número um, não pôde comparecer; Jasey é o número quatro. Como o exame do exoma se tornou mais comum, os números nos crachás com nome aumentaram rapidamente. Mais de 60 famílias se juntaram ao grupo do Facebook nos últimos dois anos. Os pais trocam histórias e dicas, discutindo como lidar com convulsões ou sobre o sistema educacional. “Não é tudo luz do sol e unicórnios; há algumas coisas assustadoras”, diz Ames.

Quando Alondra foi diagnosticada com uma mutação PACS1, há três anos, sua família procurou o grupo antes de sua consulta de acompanhamento. “Por causa desse grupo, nós entramos em nossa consulta de genética com mais informações do que o nosso geneticista”, diz o pai dela, Philip Chase.Como as famílias estão acelerando os estudos dos genes do autismo — Tismoo — Spectrum News

Jogo de números

Alguns grupos de familiares, incluindo o DYRK1A, chegam a centenas. Amy Clugston fundou esse grupo depois que sua filha Lorna foi diagnosticada, após uma busca de 18 anos por respostas. Em 2009, Clugston havia inscrito Lorna em um estudo do National Institutes of Health (NIH) que estava sequenciando exomas para identificar condições genéticas desconhecidas.

Ela não ouviu nada dos pesquisadores do NIH por quatro anos. Mas então um alerta do Google que ela havia definido para o estudo chegou com um link para uma densa tabela destinada apenas a cientistas. A tabela listou algumas características de participantes não identificados, além das mutações que eles carregam. Uma sequência de 25 palavras médicas multissilábicas descrevia sua filha perfeitamente; Esta menina, de acordo com a lista, tinha uma mutação em um gene chamado DYRK1A. Clugston contatou os pesquisadores e disse que essa garota deveria ser sua filha.

Alguns dias depois, ela participou de uma reunião científica, em que viu um cartaz com fotos de crianças com mutações no mesmo gene. Ela parou de repente: 10 versões de Lorna a encaravam. “Eu estava realmente em choque”, diz ela. “Eu estava lendo e vendo exatamente o que minha filha havia vivido”. Pouco depois, os pesquisadores responderam: A garota na tabela era de fato Lorna. Clugston encontrou duas outras famílias online que têm filhos com mutações DYRK1A, semeando o grupo do Facebook. Dois anos depois, ela conseguiu que o grupo se reunisse com um pesquisador que estudasse a condição.

Clugston montou uma pesquisa informal e fixou no topo da página do Facebook, perguntando aos pais sobre as características de seus filhos. A pesquisa revelou que 88 de 204 crianças têm autismo, e a maioria tem atrasos de fala e desenvolvimento, tamanho menor de cabeças e problemas para comer. Também descobriu tendências anteriormente não estudadas: 145 pais disseram que seus filhos são fascinados por água — uma propensão que pode se tornar perigosa se a criança sair andando por aí. E um número de crianças tem ombros torcidos e atrasos para nascer ou perder os dentes de leite.

Clugston tornou-se uma especialista nesse gene, a ponto de identificar em fotos outras pessoas que têm a mutação. Krista Furgala, que postou uma foto de seu filho Jameson em um grupo do Facebook para crianças com cabeças pequenas, lembra a mensagem de Clugston no ano passado: “Eu acho que você é um de nós”, escreveu Clugston. Furgala levou essa informação ao geneticista de Jameson e pediu-lhe para sequenciar o gene. O geneticista estava cético, mas os resultados provaram que Clugston estava certa — e economizou milhares de dólares para Furgala.

Em poucos meses, Furgala encontrou “abrigo” em uma reunião de família, onde descobriu informações mais valiosas sobre Jameson, de 6 anos. Por exemplo, o neurologista de Jameson descartou as preocupações de Furgala de que o menino estivesse tendo convulsões, apesar de seus episódios de olhar para o espaço e suas quedas repentinas. Mas outros pais na reunião confirmaram que as convulsões são comuns entre as crianças com as mutações. Eles também aconselharam Furgala a usar medicamentos mais eficazes para convulsões e aconselharam-na a não usar óleo de canabidiol para ajudar o filho a dormir. Ela estava experimentando o uso do óleo, mas parou após a recomendação.

Esses pais geralmente sabem mais sobre a condição de seus filhos do que qualquer pesquisador ou clínico, diz Evan Eichler , professor de ciências genômicas da Universidade de Washington, em Seattle. “Há muito mais confiança nessas organizações porque todas compartilham uma experiência em comum”, diz ele. Eichler colaborou no maior estudo do gene DYRK1A , que era aproximadamente de um quarto do tamanho da pesquisa de Clugston no Facebook. “Os grupos de pais têm acesso a pessoas que os pesquisadores não têm”, diz ele.

Com estes números, vêm observações que podem semear a pesquisa. Sermone, por exemplo, notou que seu filho Tony tinha um número impressionante de dentes para sua idade: tinha todos os dentes antes de seu primeiro aniversário. Quando ela perguntou a outras pessoas do grupo ADNP no Facebook, pai e mãe disseram que viram o mesmo fenômeno em seus filhos. Sermone então contatou uma equipe belga, uma das poucas que conseguiu encontrar estudando o gene. Ela diz que eles não levaram a observação sobre os dentes a sério até que 44 dos 54 pais do grupo tivessem confirmado essa mesma característica.

Usando dados da Sermone, os pesquisadores descobriram uma ligação em camundongos entre o gene e uma via envolvida na formação óssea . Sermone consta como autora no artigo e desde então colaborou com outra equipe que estuda problemas sociais em crianças com as mutações.

Weldon também procurou diretamente os cientistas. Depois que ela descobriu sobre a mutação SYNGAP1 de seu filho, ela contatou o neurocientista Gavin Rumbaugh no Scripps Research Institute em Jupiter, na Flórida [EUA]. Em 2016, Rumbaugh e Weldon organizaram o primeiro encontro do SYNGAP1, em que Rumbaugh foi bombardeado por histórias de crianças que demonstravam uma tolerância excepcionalmente alta à dor — por exemplo, durante os exames de sangue. Explorando isso ainda mais em camundongos que não tinham uma cópia deste gene, ele descobriu que os neurônios nas regiões sensoriais dos camundongos são lentos para reagir, mas os de outras áreas do cérebro são excessivamente excitáveis.

Esse estudo inclui dados de 48 pessoas com mutações no gene, coletadas através de um registro que Weldon lançou pouco depois da reunião. O registro agora tem 209 pessoas com uma mutação, além de seus relatórios médicos; cientistas habilitados podem acessar as informações e tentar recrutá-las para estudos. “Quando você tem algumas centenas de pacientes espalhados pelo mundo, eles claramente têm pontos em comum e isso realmente ajuda a impulsionar a pesquisa”, diz Rumbaugh. “A única maneira de realmente entender o que esses fenótipos comuns são é criar um registro de pacientes”.

“Essa parte que eu estou aprendendo é a mais importante — reunir todas essas famílias.” (Sandra Sermone)

Acelerando estudos

Registros regionais podem sugerir tendências que os pesquisadores não podem ver. Mas, para acompanhar essas tendências, os pesquisadores geralmente participam das reuniões de familiares.

Nos últimos 10 anos, o geneticista clínico Bert de Vries participou de três reuniões de familiares para a síndrome de Koolen-de Vries, nomeada em parte por ele. Em 2006, de Vries descreveu uma deleção de uma região genética chamada 17q21.31 em três pessoas; em reuniões de familiares, no entanto, ele já conheceu dezenas de outros ‘kool kids‘, como são chamados. Ele recrutou participantes e coletou dados para três estudos — sobre atraso na fala , convulsões e características faciais características .

Raphael Bernier e seus colegas estão organizando reuniões de familiares em Seattle para pessoas com mutações em DYRK1A ou SCN2A — em parte para reforçar o recrutamento para seu estudo TIGER , que busca detalhar as características de 16 formas genéticas de autismo. A equipe convida as famílias para irem a sua clínica para uma série de avaliações de um dia inteiro, incluindo uma avaliação de autismo, rastreamento ocular e exames de imagem do cérebro. Até agora, 10 famílias concordaram em participar do estudo enquanto visitavam Seattle, aumentando o número de participantes com uma mutação DYRK1A em quase um terço.

O Projeto Simons Variations in Individuals , agora em seu nono ano, também coleta informações médicas detalhadas sobre pessoas com mutações em qualquer de 53 genes ligados ao autismo, incluindo o PACS1 (o projeto é financiado pela Simons Foundation, organização controladora do Spectrum News). A equipe do projeto participou da reunião no Texas e coletou sangue de 27 pessoas: 8 crianças com uma mutação no gene e seus irmãos e pais. Eles planejam disponibilizar essas amostras para cientistas interessados em estudar o gene ou em transformar as células do sangue em neurônios.

Grande parte da pesquisa sobre essas formas raras de autismo é focada em entender como as mutações afetam o cérebro. Muitas famílias, no entanto, estão esperando por tratamentos.

Em uma fria manhã de fevereiro, Sermone chega ao Hospital Mount Sinai, em Nova York [EUA], carregando um cheque de cerca de quase um metro de comprimento de US$175.000. Ela e as outras famílias levantaram esse dinheiro em grande parte através do grupo do Facebook que ela fundou. Ela está levando para Joseph Buxbaum , diretor do Centro de Autismo Seaver para Pesquisa e Tratamento.

O estudo que irá financiar é um primeiro passo para convencer uma empresa farmacêutica a investir em um medicamento para tratar pessoas com uma mutação na ADNP. Os pesquisadores também precisam mostrar que podem recrutar participantes experimentais suficientes. Depois que Sermone lhe dá o cheque, a equipe de Buxbaum recapitula dados das nove primeiras famílias do estudo e discute os planos para testar pequenas moléculas em neurônios de pessoas com essas mutações. Um grupo de famílias PACS1 também formou uma fundação privada destinada a desenvolver tratamentos , mas eles não estão tão avançados.

A reunião no Texas é sobre conexões humanas, diz Ames. No final do primeiro dia, as fronteiras entre as famílias foram quebradas. As crianças saem de uma sala de recepção apertada do hotel e cambaleiam, dançam e correm atrás umas das outras do outro lado do saguão. Irmãos pegam um ao outro pela mão e correm para os cantos para conversar. Chloee Pearson, de 17 anos, a mais velha participante com a síndrome, mostra um álbum de fotos para Finley Brown, de 4 anos, que a entretem o resto da noite. Os pais sentam-se no chão, reunidos, discutindo marcos e retrocessos. As discussões continuam até altas horas.

Durante a recepção, Angel Matthews chega com seu filho, Dalton, de 10 anos, que foi diagnosticado em agosto de 2018. Matthews apenas se juntou ao grupo há cerca de um mês e está se encontrando com outras famílias pela primeira vez. Ela observa enquanto Dalton se senta em uma cadeira do saguão, batendo as mãos com excitação enquanto as outras crianças passam correndo. Ele conhece seus limites físicos, ela diz, então ele geralmente não se junta a outras crianças brincando. Como a maioria das pessoas não consegue entendê-lo, ele geralmente não fala com ninguém além de sua irmã ou de sua mãe. Mas esta reunião é diferente. Em um passeio de ônibus no dia seguinte, Dalton se senta ao lado de um estranho e conversa sem parar durante uma hora de viagem.

 

(Texto traduzido do original da Spectrum News, em inglês)

Leia as outras duas reportagens da série, traduzidas:

Spectrum News explica: ‘Por que exames genéticos são importantes para pessoas autistas?’

A corrida da Europa por mais exames genéticos.

Estudo mostra que vacina tríplice viral não causa autismo

Trabalho científico utilizou base de 650 mil crianças na Dinamarca

A revista científica “Annals of Internal Medicine” teve um estudo publicado dia 4.mar.2019 em que conclui: a vacina contra o sarampo, a caxumba e a rubéola – conhecida como tríplice viral no Brasil; “MMR” em inglês – não causa nem aumenta o risco de autismo, assim como não desencadeia o Transtorno do Espectro do Autismo (TEA) em crianças a ele suscetíveis. A pesquisa tomou como base um total de 657.461 crianças nascidas na Dinamarca entre 1999 e 2010 e, assim como outros estudos anteriores, refutou um mito antigo a respeito de vacinas e autismo.

Mito inglês

Em 1998, o médico inglês Andrew Wakefield publicou, na revista médica “The Lancet”, um estudo com apenas 12 crianças, que vinculava a vacina MMR (tríplice viral) e autismo. Em 2010, o médico perdeu seu registro no Reino Unido e, em 2011, a revista retirou o estudo depois que uma investigação descobriu que Wakefield havia alterado informações sobre as crianças estudadas. Wakefield, que teve de se retratar na mesma revista por erros metodológicos que alguns especialistas definem como “premeditação de sua parte”, mudou-se, então, para os Estados Unidos, onde continuou a exercer a medicina.

Desde essa época, uma alarmante queda nas vacinações, principalmente da tríplice viral, foi disparada pela notícia de que a vacina estaria ligada ao autismo, além de um debate político e entre os profissionais de medicina, além de ter potencializado teorias da conspiração envolvendo a indústria farmacêutica. Na sequência, vários tentaram reproduzir os resultados de Wakefield, no entanto, nenhuma ligação foi encontrada entre vacinas e autismo.

Para a bióloga Graciela Pignatari, “a volta dessas doenças que já estavam erradicadas é uma involução e não podemos deixar isso acontecer numa fase em que temos tanto acesso e evoluímos tanto cientificamente. Definitivamente vacina não causa autismo!”, enfatizou ela.

O estudo

O novo estudo dinamarquês, teve como base um total de 6.517 crianças que foram diagnosticadas com autismo (uma taxa de incidência de 129,7 a cada 100 mil).

No período pesquisado, 6.517 crianças foram diagnosticadas com autismo (uma taxa de incidência de 129,7 a cada 100 mil). Foram estudadas as características das crianças e o tempo decorrido desde a vacinação. O estudo afirma que “a comparação entre crianças vacinadas e não vacinadas produziu uma razão de risco de autismo de 0,93. Nenhum risco aumentado de autismo após a vacinação foi consistentemente observado em subgrupos de crianças definidas de acordo com a história de autismo dos irmãos, fatores de risco do autismo (com base em um escore de risco de doença) e outras vacinações ou durante períodos específicos após a vacinação”.

Sarampo

Em 2016, o Brasil obteve um certificado da ONU pela eliminação do sarampo, em virtude dos números dos anos anteriores. No ano passado, porém, tivemos um grande surto da doença — atingindo 11 Estados e 10.302 pessoas — por conta da baixa cobertura da tríplice viral. Entre as causas, estão os movimento antivacinas (que acreditam na ligação entre vacinas e autismo) e na entrada de venezuelanos sem imunização no Brasil, por conta da crise naquele país. Em outros lugares do mundo, o número de sarampo também cresceram assustadoramente.

Para a médica neuropediatra e geneticista Iara Brandão, a importância da imunização abrange toda a sociedade. “Vacinar é uma atitude individual. Deixar de vacinar é um risco coletivo”, resumiu a médica.

A Organização Mundial da Saúde (OMS) classifica a “relutância ou a recusa em vacinar” como uma das dez principais ameaças à saúde global em 2019. Não há tratamento específico para o sarampo.

O estudo completo pode ser acessado em neste link

A corrida da Europa por mais exames genéticos - Tismoo

Muitos países europeus estão atendendo à crescente demanda por exames genéticos para pessoas autistas — e suas consequentes considerações éticas e científicas.

Spectrum News é um site dos EUA que dedica-se a cobrir as questões do autismo sempre com um embasamento científico. Em janeiro de 2019, eles publicaram a primeira de uma série de três reportagens sobre genética clínica e autismo — que também foi publicado, nos EUA, pela revista Scientific American. Esta é segunda reportagem da série, publicada em 13.fev.2019. Segue aqui a tradução livre do original (em inglês), que pode ser acessado neste link. O texto, como sempre fazemos, está cheio de links referenciando os estudos científicos, quem são os especialistas citados e o que é cada exame genético.

Por Marta Zaraska
(versão em português: Francisco Paiva Junior)

Gabin Savard não tinha palavras. O menino de 2 anos estava cheio de energia, mas não falava, e seus pais, Marylou e Laurent, estavam ficando cada vez mais ansiosos. Gabin estava se desenvolvendo mais lentamente do que seu irmão mais velho, Sébastien. O casal procurou livros para pais e de pediatria, mas o que os dois leram apenas aprofundou sua preocupação. Eles repetidamente mencionaram suas preocupações ao pediatra durante exames regulares. “Talvez ele não tenha nada a dizer?”, brincou o médico, despreocupado. Laurent Savard, um conhecido comediante na França, não viu o humor.

Quando Gabin ainda não falava, com quase 4 anos de idade, seus pais decidiram levá-lo a um psiquiatra da infância, que concluiu que o menino tinha autismo. O diagnóstico ajudou a explicar o silêncio de Gabin, mas também levantou novas questões: havia algo que os pais de Gabin poderiam ou deveriam fazer? A criança ainda falaria? Que tipo de progresso seus pais poderiam esperar?

Ninguém parecia ter as respostas. Cerca de um ano depois, ainda à procura de ajuda, a família levou Gabin para uma avaliação no Hospital Universitário Robert-Debré, em Paris, especializado em condições infantis raras. Logo depois, eles receberam um telefonema: “vocês gostariam de participar do estudo Paris Autism Research International Sibpair (PARIS), um projeto internacional que recruta famílias para exames genéticos?” A família se inscreveu para o estudo e forneceu muitos tubos de saliva e sangue. E esperaram… um ano, dois, cinco. “Quase nos esquecemos que Gabin havia participado deste estudo”, recorda Laurent.

Em 2012, a família finalmente teve uma resposta do psiquiatra Richard Delorme , que supervisiona o projeto com o geneticista Thomas Bourgeron. Delorme e seus colaboradores haviam sequenciado e analisado todos os trechos do DNA da família e descobriram que Gabin carrega uma mutação no SHANK3 (este gene é necessário para que os neurônios se conectem adequadamente, e é objeto de um longo estudo de Bourgeron).

“Eu sentei na cama, e fiquei me perguntando como escrever ‘Shank’. Pensei que era ‘shrank’, com um ‘r’, como em ‘Shrek’”, contou Laurent. “Foi um tsunami emocional. Fiquei aliviado e, ao mesmo tempo, meu cérebro explodiu quando o professor Delorme me disse que isso significava um autismo muito severo”, disse.

Mutações no gene SHANK3 estão presentes em cerca de 0,7% de todas as pessoas com autismo e cerca de 2% das pessoas com autismo e deficiência intelectual . Mas nenhum dos pais de Gabin tem a mutação — o que significa que ocorreu espontaneamente. Mutações espontâneas [ou também conhecidas como mutações do tipo ”de novo”] tendem a ter efeitos severos, e Gabin provavelmente permanecerá minimamente verbal; aos 16 anos, ele ainda fala apenas algumas palavras e não sabe escrever ou contar. “Ele também é frequentemente hiperativo e tem tiques motores. Por outro lado, ele é um mestre na patinação”, diz seu pai.

Laurent Savard usou o fato de ser uma celebridade para falar publicamente sobre o autismo de seu filho. Ele diz que outros pais de crianças autistas costumam pedir conselhos a ele: por exemplo, como ele conseguiu o sequenciamento do genoma completo para seu filho? “Foi realmente apenas sorte”, diz ele. Gabin estava no lugar certo, na hora certa: por acaso visitando o Hospital Universitário Robert-Debré quando o estudo PARIS estava recrutando pacientes.

Na França, cerca de dois terços das crianças autistas recebem algum tipo de exame genético, pago pelo serviço nacional de saúde. Isso é o dobro do que é testado nos Estados Unidos, onde as companhias de seguros normalmente não cobrem o custo dos exames. A maioria das crianças francesas com autismo faz exame para a síndrome do X frágil ou recebe uma ‘análise de microarray cromossômico’. Este último exame detecta grandes deleções ou duplicações de DNA associadas ao autismo. Alguns hospitais também usam painéis genéticos, particularmente para crianças com traços graves, para examinar um pequeno subconjunto de 99 genes fortemente ligados a condições sindrômicas. Mas esses exames direcionados não produzem resultados [práticos] em 30% das vezes. E fora de um estudo de pesquisa científica, poucas crianças autistas recebem algo mais abrangente.

Para melhorar essa situação, alguns governos europeus estão canalizando fundos para expandir o número de exames genéticos que suas clínicas oferecem como rotina. Se Gabin tivesse nascido na Holanda, por exemplo, seus médicos poderiam ter optado por sequenciar seu exoma, a porção codificadora de proteína de seu genoma. “Estamos realmente em uma fase de transição. Em vez de testar um, dois, três, quatro genes [como no painel], todos estão agora migrando para o sequenciamento completo ”, diz Ype Elgersma , professor de neurociência molecular da Universidade Erasmus, em Roterdã.

Da mesma forma, a França e o Reino Unido lançaram planos ambiciosos para construir instalações de seqüenciamento, criar bancos de dados e integrar os resultados dos exames genéticos aos cuidados de saúde padrão. Em outubro, o Reino Unido anunciou planos para sequenciar 5 milhões de genomas nos próximos cinco anos. O escopo do Plano de Medicina Genômica 2025 da França é menor, mas Bourgeron diz que isso ainda ajudará a ter o sequenciamento regular dos genomas completos das pessoas. Ambos os projetos podem fornecer às pessoas autistas mais oportunidades de serem testadas. Em janeiro, por exemplo, 13 centros no Reino Unido começaram a oferecer sequenciamento de genoma completo para pessoas com câncer e condições de diagnóstico inconclusivo, incluindo autismo.

Esse movimento em direção ao exame genético é parte de uma mudança maior nas atitudes em relação ao autismo na Europa. Cerca de uma década atrás, o continente estava focado principalmente em questões sociais relativas ao autismo, como direitos e acesso, diz Zsuzsanna Szilvasy, presidente da Autism-Europe, um grupo de defesa do autismo que abrange 38 países. “Entre os Estados Unidos e a Europa, havia uma enorme diferença.” Agora, porém, a Europa está colocando os holofotes nos serviços genéticos — em parte em resposta às demandas dos pais.

À medida que esses países ampliam os exames genéticos para o autismo, seus esforços podem dar lições práticas para outras regiões [do planeta]. Os dados coletados também podem ajudar os cientistas a ligar mais variantes genéticas ao autismo, tornando os exames genéticos mais úteis para todos.

Dores crescentes

De certa forma, a Europa tem sido líder no campo dos exames genéticos para o autismo. A União Europeia, juntamente com parceiros industriais e institucionais, investiu pesadamente numa colaboração denominada EU-AIMS , o maior subsídio do mundo para pesquisa de autismo. A primeira fase do projeto, que ocorreu entre abril de 2012 e março de 2018, procurou identificar biomarcadores de autismo , entre outros objetivos; o próximo estágio, o AIMS-2-TRIALS , lançado em junho [de 2018], concentra-se no desenvolvimento e teste de terapias. “Em um ou dois anos, teremos um site com acesso a toda a informação genética deste projeto”, diz Bourgeron, que supervisiona a pesquisa genética da iniciativa.

O Council of Europe, uma organização de direitos humanos com 47 estados membros, foi o primeiro no mundo a redigir leis a respeito de exames genéticos. Esse documento, a Convenção sobre Direitos Humanos e Biomedicina, ou a Convenção de Oviedo, lançada em 1997 — vários anos antes dos EUA elaborarem qualquer legislação similar. O documento reconheceu o direito de uma pessoa saber seu histórico genético, proibiu a discriminação e introduziu o direito ao aconselhamento genético.

Um tratado de complementação em 2008 fez vários acréscimos, incluindo a proibição de exames genéticos diretos ao consumidor para variantes associadas a condições de saúde. Na última década, 29 países europeus ratificaram a convenção como lei nacional e 5 ratificaram também o tratado. No ano passado, 19 estados membros da União Européia assinaram uma declaração para compartilhar dados de saúde genômica através das fronteiras internacionais, com o objetivo de sequenciar 1 milhão de genomas até 2022.

Apesar desses compromissos, no entanto, não existem leis válidas em toda a Europa. Esta falta de regulamentação consistente deixou os profissionais de saúde no limbo, inseguros sobre como ampliar os exames genéticos para autismo ou outras condições. Na Suécia — que assinou a Convenção de Oviedo, mas não a ratificou —, os médicos de algumas regiões pedem exames abrangentes e os de outras, nenhum. “Parece muito diferente em todo o país”, diz Kristiina Tammimies, professora assistente de neuropsiquiatria no Karolinska Institutet, em Estocolmo.

Na Alemanha também, os exames podem variar dependendo de qual laboratório realiza a análise. O serviço de saúde da Alemanha paga pelo seqüenciamento limitado até 25 kilobases, ou cinco a sete genes, para qualquer condição, incluindo autismo. Os geneticistas clínicos muitas vezes enviam amostras de sangue para laboratórios sem especificar quais genes devem ser testados. Os laboratórios analisam milhares de genes e depois sugerem os que são relevantes para os médicos, que cobram do governo ou dos planos de saúde apenas esse conjunto.”Cada laboratório de diagnóstico faz de um jeito”, diz Johannes Lemke , diretor do Instituto de Genética Humana do Hospital Universitário de Leipzig. Qualquer clínico que deseje ter um sequenciamento maior, como o exoma ou o genoma completo, deve solicitar uma pré-aprovação, que é concedida em menos de 10% das vezes. “Quase não vale a pena tentar”, diz Lemke.

Na Áustria, o governo não paga por nenhum exame genético para o autismo. “Sou contatado por muitos pais frustrados. Eles me ligam; me escrevem; dizem: Sabe, ouvimos falar de exames genéticos; queremos fazer isso — se você puder fazê-lo, podemos pagar. [Mas,] sempre tenho de recusar”, diz Gaia Novarino , líder do grupo no Instituto de Ciência e Tecnologia da Áustria. Novarino e seus colegas estão tentando obter financiamento do governo ou das seguradoras para começar a oferecer exames genéticos em Viena. “O melhor cenário seria que qualquer criança que entra na clínica para diagnóstico de autismo ou o departamento de neuropsiquiatria pediátrica seja enviada quase automaticamente para exames genéticos”, argumentou ela. “Esse seria o meu sonho”.

Mas a situação na Espanha sugere que o financiamento é apenas um obstáculo. Embora o governo espanhol cubra o custo do exame genético para autismo, apenas aproximadamente metade das crianças autistas recebem qualquer exame, segundo um estudo de 2017. Dessa metade, apenas cerca de 25% escolhem a análise de microarray. Isso pode ser porque poucos médicos e famílias na Espanha estão cientes dos benefícios dos exames. Outra análise em 2017 mostrou que apenas 2,5% dos neuropediatras espanhóis prescreveram o sequenciamento do genoma completo para uma criança atendida com suspeita de alguma condição genética.

“O melhor cenário seria que qualquer criança que entrasse na clínica para o diagnóstico de autismo fosse enviada quase automaticamente para exames genéticos” (Gaia Novarino)

Preocupações com a privacidade:

Quando os médicos e as famílias sabem dos exames disponíveis e os custos são cobertos, eles ainda podem recusar os exames porque há confusão sobre o que fazer com os resultados. O equilíbrio entre o direito individual à privacidade e o ímpeto de divulgar resultados genéticos varia enormemente através das fronteiras, em parte graças a diferenças culturais. Posturas extremas em ambas as extremidades têm consequências dramáticas sobre como médicos e famílias chegam aos exames genéticos.

No Reino Unido, o Comitê Conjunto de Genômica em Medicina (Joint Committee on Genomics in Medicine) recomenda que quem faz exames compartilhem seus resultados genéticos com parentes que poderiam se beneficiar ao sabê-los — incluindo, digamos, membros da família com propensão a doenças cardíacas ou câncer específico. Se optarem por não divulgar seus resultados, o comitê incentiva os médicos a contatarem os próprios membros da família, mesmo sem o consentimento explícito do paciente. Muitos profissionais de saúde britânicos dizem que preferem preservar a confidencialidade de um paciente, mas também se preocupam em ser responsáveis por negligência se não revelarem riscos potenciais para os membros da família.

A França leva essa postura um passo adiante: de acordo com uma lei de 2011, os cidadãos franceses têm a obrigação legal de divulgar qualquer “anomalia genética grave” associada a uma doença grave a seus parentes, desde que medidas preventivas ou tratamento sejam possíveis. Mas os pesquisadores ainda estão debatendo quais mutações devem se enquadrar nesta lei.

Os resultados dos exames genéticos são ainda menos privados na Suíça e Holanda, os quais permitem às seguradoras levar em conta essas informações ao elaborar apólices de seguro de vida. Na Noruega, pessoas com certas mutações genéticas, incluindo algumas associadas ao autismo, podem ter que pagar mais pelo seguro de saúde privado . Embora apenas 9% dos pais de crianças autistas naquele país afirmem que são contra o exame genético, 67% temem que seus filhos enfrentem discriminação com seguros.

Por outro lado, a Alemanha leva a confidencialidade tão a sério que os médicos não podem discutir os resultados de uma criança, mesmo com outros médicos, sem o consentimento por escrito dos pais. “Às vezes é muito restritivo para a rotina do dia a dia de trabalho”, diz Lemke. Ele credita a história — e forte memórias da eugenia nazista durante a Segunda Guerra Mundial — como a razão das rigorosas leis alemãs. “Queremos realmente ter certeza de que está estritamente regulado e que nada possa dar errado”, diz ele.

Após a Convenção de Oviedo, a maioria das nações européias adotou leis para proteger seus cidadãos da discriminação genética. A Grécia foi tão longe a ponto de fazer emenda em sua constituição para conceder proteções claras. Alguns países, como França e Portugal, proíbem as companhias de seguros de usar resultados genéticos para estabelecer níveis de preço. Outros, como o Reino Unido, têm uma “lei branda”: desde 2001, o governo britânico tem elaborado diretrizes periódicas sobre quais informações genéticas podem ser solicitadas dos consumidores.

“Estamos realmente em uma fase de transição. Todo mundo agora está mudando para o sequenciamento completo [do genoma]. ”Ype Elgersma

Quarto para melhoria

Para colher todos os benefícios dos exames genéticos, o que é necessário, dizem os especialistas, são necessários mais diretrizes, padronização entre países, mais financiamento e maior conscientização entre os profissionais de saúde. Existem várias novas iniciativas na Europa que poderiam tornar os exames para pessoas autistas mais consistentes em todo o continente.

Por exemplo, em 2013, o Conselho Europeu de Genética Médica lançou um sistema de registro em todo o continente para profissionais de aconselhamento genéticos e começou a oferecer diretrizes profissionais os cadastrados. Apenas alguns países, como a França e a Noruega, já tinham leis que regulam esse tipo de trabalho, embora na Alemanha e na França o aconselhamento genético seja rotineiro para qualquer pessoa que faça um exame (a título de comparação, nos EUA, apenas 24% das crianças diagnosticadas com autismo fazem aconselhamento genético).

Muitos centros genéticos também estão usando diretrizes emitidas pelo Colégio Americano de Genética Médica e Genômica (American College of Medical Genetics and Genomics) em situações para as quais eles não têm nada definido. Por exemplo, a instituição de Lemke se baseia nessas recomendações ao decidir o que fazer com as descobertas ‘incidentais’ de um exame — o que pode prever outros problemas médicos ou indicar paternidade. “Temos algo no que confiar”, diz Lemke.

Além disso, a Rede Europeia de Referência Ithaca (Ithaca European Reference Network), financiada pela UE — um grupo de 38 laboratórios credenciados e centros médicos especializados em deficiência intelectual e defeitos congênitos — está tentando disseminar diretrizes e outros recursos para médicos e famílias. Especialistas estão disponíveis para consultas via sistemas de telemedicina. A rede também está tentando abrir o acesso ao sequenciamento de todo o exoma e todo o genoma no continente inteiro. De acordo com Elgersma, a rede deve nivelar as regras, assegurando que “se você tiver uma doença rara na Holanda, não teria muito mais benefícios do que se você tivesse o mesmo na Romênia”.

Todos esses países estão sendo forçados a lidar com a crescente demanda por exames genéticos, em grande parte por pais de crianças com condições raras. Para Gabin, os resultados de seu sequenciamento do genoma completo mudaram completamente a perspectiva de sua família sobre seu autismo. Laurent Savard diz que chorou depois de aprender sobre a mutação de seu filho, mas também o deixou esperançoso quanto aos avanços científicos. “Imediatamente depois, li na internet que camundongos com mutações no SHANK3 se tornaram típicos depois de um tratamento molecular”, diz ele. “Eu, então, imaginei que Gabin se tornaria típico um dia, falando, me dizendo o que ele experimentou por dentro.”

Savard sabe que há um enorme abismo entre estudos com animais e terapias para pessoas, mas ele ainda é otimista. Em seu livro de 2017, “Gabin Sans Limites” (“Gabin sem Limites”), Savard escreveu: “Talvez Gabin compense o tempo perdido… Ele nos afogará numa enxurrada de palavras. Vamos acordá-lo até no meio da noite pelo simples prazer de ouvi-lo falar”.

Por enquanto, Savard está realizando um programa de comédia stand-up para aumentar a conscientização sobre o autismo e o potencial da pesquisa genética.O ato é chamado de “Le Bal des Pompiers” — “O baile dos bombeiros” —, que acontece em toda a França, dia 13 de julho — a noite antes do Dia da Bastilha e, por coincidência, aniversário de Gabin. Para defender os direitos de Gabin, ele diz, “o humor é a melhor arma”.

(Texto traduzido do original da Spectrum News, em inglês)

 

Leia a primeira reportagem da série traduzida: Spectrum News explica: ‘Por que exames genéticos são importantes para pessoas autistas?’