Posts

Liderado por brasileiros, grupo descobre mecanismo causador da síndrome de Pitt-Hopkins, disfunção neuropsiquiátrica com características de TEA

Um grupo liderado pelo cofundador da Tismoo Biotech, o neurocientista brasileiro Dr. Alysson R. Muotri, da Universidade da Califórnia San Diego, nos Estados Unidos, em parceria com cientistas brasileiros da Universidade Estadual de Campinas (Unicamp), conseguiu reverter a evolução da síndrome de Pitt-Hopkins em modelos humanos de laboratório, além de descobrir o mecanismo causador dessa condição de saúde. A descoberta abre caminho para a possibilidade de tratamento tanto com medicamento como terapia gênica para a síndrome, que é um dos subtipos de Transtorno do Espectro do Autismo (TEA).

O trabalho científico foi publicado nesta segunda-feira, 2.mai.2022, na revista Nature Communications. “A terapia genética nunca foi testada para o autismo. Já imaginou reverter de vez todos os sintomas indesejados e comorbidades do autismo profundo? Nosso trabalho com a síndrome de Pitt-Hopkins é a porta de entrada para a melhores condições de vida e aumento do potencial de indivíduos autistas”, explicou Muotri.

Outro coordenador do trabalho, ao lado de Muotri, foi Fabio Papes, professor do Instituto de Biologia (IB-Unicamp): “Para a maioria dos casos de TEA, não se sabe qual gene causa a condição quando mutado. Assim é também para a maioria das doenças neuropsiquiátricas, como esquizofrenia, depressão e transtorno bipolar. A síndrome de Pitt-Hopkins, por sua vez, tem como origem uma mutação no gene TCF4. Mas, até então, não eram conhecidos seus mecanismos moleculares, ou seja, o que há de diferente nas células do sistema nervoso dos pacientes com a mutação”, contou Papes.

A pesquisa — que teve apoio, no Brasil, da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); e, nos EUA, do National Institutes of Health (NIH) e da Pitt-Hopkins Research Foundation (PHRF) — agora deve avançar para estudos pré-clínicos e clínicos. Os pesquisadores fecharam parceria com uma empresa especializada em terapia gênica, que está licenciando a tecnologia usada nos experimentos para que futuramente possa ser testada em humanos.

Síndrome de Pitt-Hopkins

Caracterizada por déficit cognitivo, atraso motor profundo, ausência de fala funcional e anormalidades respiratórias, entre outros, a síndrome de Pitt-Hopkins foi descrita em 1978, mas seu gene causador — chamado TCF4 — ficou conhecido apenas em 2007. A estimativa é de que a prevalência seja de 1 a cada 35 mil nascimentos.

Para esta pesquisa foram usados organoides cerebrais humanos (também conhecidos como minicérebros, estruturas desenvolvidas a partir de células-tronco reprogramadas dos próprios indivíduos) — tanto dos pacientes com a síndrome, como de seus pais —, já que a síndrome não se desenvolve em camundongos da mesma maneira que em seres humanos. Os minicérebros dos pais se desenvolveram normalmente; os das pessoas com a mutação no TCF4 cresciam menos — resultado da menor replicação das células causada pela síndrome e de um prejuízo da própria neurogênese —, além de terem neurônios em menor número e com menor atividade elétrica comparados aos dos pais, que eram os minicérebro de controle. Essa descoberta pode explicar muitas características clínicas desses pacientes.

São resultados semelhantes aos obtidos no primeiro estudo do cérebro de uma pessoa com síndrome de Pitt-Hopkins, quando foram analisados os tecidos post-mortem (de um paciente falecido por outras razões), o que reforça as conclusões obtidas com os minicérebros. “O acesso ao cérebro post-mortem foi essencial para validarmos alguns dos resultados obtidos com os organoides cerebrais. O fato de termos visto características semelhantes entre o organoide criado em laboratório e o cérebro mostra o quão relevante é essa tecnologia”, afirma Muotri.

Terapia gênica

Após desvendar quais alterações foram causadas pela mutação no gene TCF4, os pesquisadores buscaram maneiras de corrigi-la e, assim, realizar uma prova de conceito do que seria um possível tratamento.

Foram testadas três maneiras diferentes estratégias:

Alysson Muotri com 'minicérebros', organoides cerebrais — TismooA primeira foi utilizando a técnica de manipulação gênica conhecida como CRISPR-Cas9. Nesse contexto, uma versão recente da técnica foi empregada para fazer com que a cópia funcional do gene existente na célula disfuncional passe a expressar muito mais proteína, compensando a cópia afetada pela mutação causadora da síndrome de Pitt-Hopkins.

A segunda intervenção, usando uma técnica diferente, os cientistas inseriram uma cópia extra do gene, que passou a exercer normalmente as funções gênicas, compensando a cópia mutada.

“Nosso genoma tem duas cópias de cada gene. O que causa a síndrome de Pitt-Hopkins é o fato de uma das cópias do TCF4 não funcionar. Inserir uma terceira cópia ou fazer com que a única cópia funcional expresse mais proteína para compensar a defeituosa pode solucionar o problema”, diz o pesquisador.

Os organoides que sofreram as intervenções passaram a crescer normalmente e tiveram um aumento da proliferação das células progenitoras, que no cérebro dão origem a diferentes tipos de célula, inclusive neurônios.

“Ainda que esse distúrbio seja considerado raro, existem outros que envolvem mutações nesse mesmo gene. Portanto, o que descobrimos aqui pode, futuramente, ser aplicado para transtornos como a esquizofrenia, por exemplo”, afirma Papes.

Fármaco

Uma terceira estratégia foi a aplicação de uma droga usada em estudos com células tumorais. Conhecida pela sigla CHIR99021, ela ativa uma via de sinalização celular conhecida como Wnt, muito estudada no contexto do câncer e que os autores descobriram ser alterada também por mutações no gene TCF4.

Em células e organoides disfuncionais tratados com a droga houve melhora em alguns indicadores moleculares e aumento de tamanho (no caso dos organoides). Os resultados abrem caminho para o desenvolvimento de medicamentos similares que possam tratar a disfunção, uma vez que a CHIR99021 ainda não pode ser utilizada em seres humanos.

“Essa via tratada com a droga é apenas uma das alteradas pela mutação no gene TCF4. A vantagem de uma terapia gênica em relação a um tratamento farmacológico é que ela resolveria o problema na sua origem. No entanto, a busca por novas drogas também é promissora”, diz Papes.

O estudo original completo pode ser acessado no site da Nature, em: nature.com/articles/s41467-022-29942-w.

Segundo o neurocientista, sabendo qual é o subtipo de autismo, sua mutação genética, é importante filiar-se a associação de pacientes dos EUA

O neurocientista brasileiro Alysson Muotri, professor da Universidade da Califórnia em San Diego (EUA) publicou recentemente em suas redes sociais a respeito de terapias gênicas, que estariam próximas de se tornarem realidade nos Estados Unidos e recomendando que famílias brasileiras com pessoas autistas, que saibam sua alteração genética, portanto seu subtipo de autismo, se filiem a associações norte-americanas. Fomos perguntar a ele detalhes dessa informação, numa entrevista por vídeo.

A postagem original dele foi a seguinte: “terapia gênica para autismo está se tornando uma realidade. Diversos subtipos de autismos são causados por mutações em um único gene. A introdução do gene correto nas células neurais é uma possível forma de reversão da condição. Os genes MECP2, CDKL5, SHANK3, SETD5, UB3A e  FMRP já estão com protocolos bem encaminhados. Semana passada, nosso lab submeteu a patente de terapia gênica para o TCF4. Muitos outros estão a caminho. É importante fazer o sequenciamento genético (recomendo a Tismoo no Brasil). Achando-se o gene candidato alterado, filie-se a respectiva associação de pacientes nos EUA o quanto antes. Por serem raros, pacientes do mundo todo podem vir a ser recrutados em ensaios clínicos”.

Terapia gênica

Este tipo de terapia consiste na correção de um gene alterado através de modernas técnicas de edição genética, ou seja, “consertando” artificialmente uma mutação em um gene que causa uma doença ou condição de saúde. A técnica utilizada foi com a enzima Crispr-Cas9 (do inglês: Clustered Regularly Interspaced Short Palindromic Repeats — em português: repetições palindrômicas curtas agrupadas e regularmente interespaçadas), uma tecnologia que permite copiar e colar o DNA. Para quem quiser entender a técnica, há um vídeo do canal Ciência Traduzida (quem quiser ver uma versão reduzida, assista de 3:12s a 5:50s) e o site G1 também fez um infográfico bem interessante explicando a técnica.

Para esclarecer diversas dúvidas, fizemos uma entrevista com o neurocientista.

Edição genética de bebês na China usando Crispr-cas9 - cientistas da Tismoo se posicionam

Entrevista

Portal Tismoo — O que é exatamente uma terapia gênica?

Alysson MuotriA terapia gênica consiste na correção de um gene alterado dentro de uma célula que causa uma certa condição [de saúde]. O autismo tem um fator genético muito forte e muitas das causas do autismo são monogênicas, ou seja, causado por alterações ou mutações em apenas um gene. Muitos destes subtipos de autismo, ao se conhecer mais das características daquele gene [alterado] e como ele leva àquele quadro clínico, acaba se transformando em uma síndrome. É o caso da Síndrome de Rett, causada por mutações no gene MECP2 e outras síndromes relacionadas. Esses subtipos de autismo são muito atraentes para terapia gênica, por serem decorrentes de um único gene alterado. Então, corrigindo esse gene, espera-se que as consequências moleculares, celulares e comportamentais sejam todas reversíveis.

Portal Tismoo — E funciona?

Alysson MuotriResultados pré-clínicos, ou seja, feitos em laboratórios. mostram a prova de conceito de que essas estratégia funciona, incluindo dados do meu próprio laboratório, mostrando que é possível uma reversão completa das alterações causadas pelo gene MECP2 alterado, em neurônios humanos. Isso também já foi demonstrado em modelos animais. Todos esses dados estão sendo apresentados ao FDA (Food and Drug Administration —  agência federal do Departamento de Saúde e Serviços Humanos dos Estados Unidos). Em geral, é uma Indústria farmacêutica que tem o suporte, para bancar um ensaio clínico e que acaba liderando essa proposta. A indústria licencia a tecnologia das universidades, junta toda a informação pré-clínica existente num pacote e apresenta ao FDA, que é a agência que irá verificar se há condições e suporte científico suficiente para que a tecnologia seja testada em humanos. 

Portal Tismoo — E essa “correção” pode ser feita no cérebro de uma pessoa?

Alysson MuotriA forma de você fazer a correção genética é mais fácil em tecidos que são de fácil acesso, como a pele ou sangue. No caso do autismo o tecido afetado é o sistema nervoso — óbvio que outros também estão, mas a parte comportamental, de linguagem e social, é afetada pelo sistema nervoso — e o cérebro, diferentemente de outros tecidos, está protegido pela caixa craniana. Portanto, fazer a correção genética nas células humanas neurais é problemático, por não termos esse acesso. Para isso, utilizamos partículas virais. Existem uma série de vírus neurotrópicos, ou seja, são que atraídos por células do sistema nervoso. Manipulamos esses vírus em laboratório para carregar o gene correto e penetrar no sistema nervoso humano, infectando as células do cérebro e fazendo a correção genética. Essa estratégia. 

Portal Tismoo — Essa é uma técnica que já se domina?

Alysson MuotriEssa técnica é antiga e tem sido dominada pela indústria da biotecnologia há bastante tempo, com alguns casos de sucesso, mas ainda muito poucos no sistema nervoso. Obviamente, isso tudo tá muito mais avançado nos Estados Unidos , onde há uma cultura de inovação e tecnologia muito forte. O Brasil, por não investir nessa área, acaba sendo um consumidor desta tecnologia. Por conta disso, pagaremos um preço alto.

Portal Tismoo — Quais os próximos passos?

Alysson MuotriEssas empresas [da indústria farmacêutica] que que têm essa tecnologia, conseguindo aprovação do FDA, organizam ensaios clínicos, ou seja, recrutam pessoas com mutações em genes específicos para que os testes clínicos sejam feitos. São os testes clínicos que vão indicar se realmente a terapia gênica vai ser efetiva ou não para aquele determinado gene. Isso está sendo discutido atualmente para Síndrome de Angelman e de Rett. Mas há uma série de outras síndromes do espectro do autismo, com outros genes alterados, que estão a caminho. Temos caminhado muito rápido nessa direção, mas alguns genes estão mais para trás, pois são pouco conhecidos. Há também uma questão também do tamanho do gene. Se o gene é muito grande, não cabe dentro das partículas virais. Genes menores têm maiores chances de prosperar. Essa série de fatores influenciam no porquê alguns genes estão mais avançados do que outros. As empresas [que lideram os testes clínicos] vão atrás de bancos de dados ou de organizações que concentram pacientes, pois obviamente são muito raros, já que as mutação que causam o autismo são muitas, para recrutar pessoas para participar dos ensaios clínicos.

Portal Tismoo — E como saber qual é a mutação genética para poder participar desses testes clínicos?

Alysson MuotriA única forma de saber é através do sequenciamento genético, um tipo de exame genético. O sequenciamento é  diferente de um microarray ou cariótipo, que acusam alterações mais grosseiras no genoma. O sequenciamento faz a leitura individual de cada letrinha do DNA, para identificar qual seria o gene alterado. Há dois tipos principais de sequenciamento genético: o do exoma e o do genoma completo. O sequenciamento do exoma faz a leitura de genes com maiores chances de você encontrar um defeito, que é mais ou menos 1% do genoma todo. O sequenciamento completo do genoma não olha só para 1%, olha para 100% do genoma e faz a leitura completa, independente daquele gente ter mais chances ou menos chances de estar mutado.

Portal Tismoo — E por que filiar-se a associações de pacientes nos Estados Unidos?

Alysson MuotriUma vez que você sabe qual o gene, recomendo se associar a essas associações internacionais. O nome da pessoa que tem autismo e sua mutação tem que estar no banco de dados dessas associações, facilitando o trabalho de recrutamento pela indústria farmacêutica. Isso já acontece bastante nos EUA. E, obviamente, como o exame genético não é tão comum fora dos EUA, ficamos assim atraentes se formos um país com maior controle da informação genética dos nossos pacientes.

Vídeo completo

A entrevista completa está no vídeo abaixo: