Posts

Missão histórica para o autismo é realizada em conjunto com a Nasa e a SpaceX, nos EUA

É a terceira vez que o neurocientista brasileiro Dr. Alysson Muotri faz o envio de organoides cerebrais (“minicérebros”) para a ISS (International Space Station, em português: Estação Espacial Internacional) em parceria com a Nasa e a SpaceX. Desta vez, porém, há um toque a mais de ineditismo: no carregamento, pela primeira vez na história, estavam minicérebros derivados de pessoas com autismo. A pesquisa, pra lá de inovadora, é também um marco histórico.

A ideia é avaliar o que acontecerá com esses minicérebros de autistas na microgravidade, além do aceleramento do envelhecimento que já se sabe. “Os organoides que estão indo têm alterações em genes relacionados à epigenética, ou seja, são genes que trabalham no empacotamento do DNA dentro da célula. E mais ou menos um terço das mutações de autistas são nessa categoria de genes, os epigenéticos, que estão relacionados com a cromatina do DNA. O que esperamos neste experimento é estudar a interação dessas proteínas com o DNA e sabemos que na microgravidade elas se alteram de forma a acentuarem os fenótipos”, explicou Dr. Muotri.

US$ 1,5 milhão

O lançamento aconteceu em Cape Canaveral, da Flórida (EUA), na noite desta quinta-feira, 14.jul.2022, às 21h44 (horário de Brasília). Essa é a missão SpaceX CRS-25 — também conhecida como SpX-25 — do Serviço de Reabastecimento Comercial para a Estação Espacial Internacional, contratada pela NASA e “pilotada” pela SpaceX, utilizando o foguete cargo Falcon 9 Block 5, movido a querosene de foguete e oxigênio líquido. O custo total da missão é de 52 milhões de dólares. Só o projeto dos minicérebros, chega a 1,5 milhão de dólares. As missões anteriores que levaram organoides cerebrais humanos do Muotri Lab para a ISS foram em julho de 2019 e em novembro de 2020. A missão atual está prevista para chegar e se acoplar à estação espacial neste sábado, 16.jul.2022, às 12h20 (horário de Brasília). Quem quiser pode acompanhar pelo canal Nasa TV ou pelo site SpaceLaunchSchedule.com.

Quer saber o porquê do neurocientista estar mandando organoides cerebrais para espação? Então, não deixe de ler o artigo “Minicérebros no espaço? Pra quê?“, do Portal da Tismoo.

Missões anteriores

Leia também sobre o primeiro envio de minicérebros humanos (ainda sem organoides derivados de autistas):”Cofundador da Tismoo envia minicérebros para o espaço em missão da Nasa e SpaceX

E sobre o segundo envio para a ISS: “Muotri envia 2ª etapa de sua pesquisa com minicérebros humanos para o espaço

Liderado por brasileiros, grupo descobre mecanismo causador da síndrome de Pitt-Hopkins, disfunção neuropsiquiátrica com características de TEA

Um grupo liderado pelo cofundador da Tismoo Biotech, o neurocientista brasileiro Dr. Alysson R. Muotri, da Universidade da Califórnia San Diego, nos Estados Unidos, em parceria com cientistas brasileiros da Universidade Estadual de Campinas (Unicamp), conseguiu reverter a evolução da síndrome de Pitt-Hopkins em modelos humanos de laboratório, além de descobrir o mecanismo causador dessa condição de saúde. A descoberta abre caminho para a possibilidade de tratamento tanto com medicamento como terapia gênica para a síndrome, que é um dos subtipos de Transtorno do Espectro do Autismo (TEA).

O trabalho científico foi publicado nesta segunda-feira, 2.mai.2022, na revista Nature Communications. “A terapia genética nunca foi testada para o autismo. Já imaginou reverter de vez todos os sintomas indesejados e comorbidades do autismo profundo? Nosso trabalho com a síndrome de Pitt-Hopkins é a porta de entrada para a melhores condições de vida e aumento do potencial de indivíduos autistas”, explicou Muotri.

Outro coordenador do trabalho, ao lado de Muotri, foi Fabio Papes, professor do Instituto de Biologia (IB-Unicamp): “Para a maioria dos casos de TEA, não se sabe qual gene causa a condição quando mutado. Assim é também para a maioria das doenças neuropsiquiátricas, como esquizofrenia, depressão e transtorno bipolar. A síndrome de Pitt-Hopkins, por sua vez, tem como origem uma mutação no gene TCF4. Mas, até então, não eram conhecidos seus mecanismos moleculares, ou seja, o que há de diferente nas células do sistema nervoso dos pacientes com a mutação”, contou Papes.

A pesquisa — que teve apoio, no Brasil, da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); e, nos EUA, do National Institutes of Health (NIH) e da Pitt-Hopkins Research Foundation (PHRF) — agora deve avançar para estudos pré-clínicos e clínicos. Os pesquisadores fecharam parceria com uma empresa especializada em terapia gênica, que está licenciando a tecnologia usada nos experimentos para que futuramente possa ser testada em humanos.

Síndrome de Pitt-Hopkins

Caracterizada por déficit cognitivo, atraso motor profundo, ausência de fala funcional e anormalidades respiratórias, entre outros, a síndrome de Pitt-Hopkins foi descrita em 1978, mas seu gene causador — chamado TCF4 — ficou conhecido apenas em 2007. A estimativa é de que a prevalência seja de 1 a cada 35 mil nascimentos.

Para esta pesquisa foram usados organoides cerebrais humanos (também conhecidos como minicérebros, estruturas desenvolvidas a partir de células-tronco reprogramadas dos próprios indivíduos) — tanto dos pacientes com a síndrome, como de seus pais —, já que a síndrome não se desenvolve em camundongos da mesma maneira que em seres humanos. Os minicérebros dos pais se desenvolveram normalmente; os das pessoas com a mutação no TCF4 cresciam menos — resultado da menor replicação das células causada pela síndrome e de um prejuízo da própria neurogênese —, além de terem neurônios em menor número e com menor atividade elétrica comparados aos dos pais, que eram os minicérebro de controle. Essa descoberta pode explicar muitas características clínicas desses pacientes.

São resultados semelhantes aos obtidos no primeiro estudo do cérebro de uma pessoa com síndrome de Pitt-Hopkins, quando foram analisados os tecidos post-mortem (de um paciente falecido por outras razões), o que reforça as conclusões obtidas com os minicérebros. “O acesso ao cérebro post-mortem foi essencial para validarmos alguns dos resultados obtidos com os organoides cerebrais. O fato de termos visto características semelhantes entre o organoide criado em laboratório e o cérebro mostra o quão relevante é essa tecnologia”, afirma Muotri.

Terapia gênica

Após desvendar quais alterações foram causadas pela mutação no gene TCF4, os pesquisadores buscaram maneiras de corrigi-la e, assim, realizar uma prova de conceito do que seria um possível tratamento.

Foram testadas três maneiras diferentes estratégias:

Alysson Muotri com 'minicérebros', organoides cerebrais — TismooA primeira foi utilizando a técnica de manipulação gênica conhecida como CRISPR-Cas9. Nesse contexto, uma versão recente da técnica foi empregada para fazer com que a cópia funcional do gene existente na célula disfuncional passe a expressar muito mais proteína, compensando a cópia afetada pela mutação causadora da síndrome de Pitt-Hopkins.

A segunda intervenção, usando uma técnica diferente, os cientistas inseriram uma cópia extra do gene, que passou a exercer normalmente as funções gênicas, compensando a cópia mutada.

“Nosso genoma tem duas cópias de cada gene. O que causa a síndrome de Pitt-Hopkins é o fato de uma das cópias do TCF4 não funcionar. Inserir uma terceira cópia ou fazer com que a única cópia funcional expresse mais proteína para compensar a defeituosa pode solucionar o problema”, diz o pesquisador.

Os organoides que sofreram as intervenções passaram a crescer normalmente e tiveram um aumento da proliferação das células progenitoras, que no cérebro dão origem a diferentes tipos de célula, inclusive neurônios.

“Ainda que esse distúrbio seja considerado raro, existem outros que envolvem mutações nesse mesmo gene. Portanto, o que descobrimos aqui pode, futuramente, ser aplicado para transtornos como a esquizofrenia, por exemplo”, afirma Papes.

Fármaco

Uma terceira estratégia foi a aplicação de uma droga usada em estudos com células tumorais. Conhecida pela sigla CHIR99021, ela ativa uma via de sinalização celular conhecida como Wnt, muito estudada no contexto do câncer e que os autores descobriram ser alterada também por mutações no gene TCF4.

Em células e organoides disfuncionais tratados com a droga houve melhora em alguns indicadores moleculares e aumento de tamanho (no caso dos organoides). Os resultados abrem caminho para o desenvolvimento de medicamentos similares que possam tratar a disfunção, uma vez que a CHIR99021 ainda não pode ser utilizada em seres humanos.

“Essa via tratada com a droga é apenas uma das alteradas pela mutação no gene TCF4. A vantagem de uma terapia gênica em relação a um tratamento farmacológico é que ela resolveria o problema na sua origem. No entanto, a busca por novas drogas também é promissora”, diz Papes.

O estudo original completo pode ser acessado no site da Nature, em: nature.com/articles/s41467-022-29942-w.

Combinando edição de genoma e organoides cerebrais, a equipe de Muotri pretende desvendar uma questão fundamental da espécie humana: o que nos faz únicos?

Dr. Alysson R. Muotri, Ph.D., professor da faculdade de medicina, diretor do Programa de Células-Tronco da Universidade da Califórnia (EUA) e sócio fundador da Tismoo, recriou organoides cerebrais contendo material genético de Neandertais na tentativa de compreender como surgiu a capacidade cognitiva distinta de nossa espécie. O trabalho, publicado nesta quinta (11.fev.2021) na renomada revista científica Science, utilizou edição de genoma (com CRISPR-Cas9) e também ajuda a entender as bases evolucionárias e neurológicas do autismo.

Organoides cerebrais, ou minicérebros, são estruturas celulares em miniatura criadas a partir de células-tronco pluripotentes que reproduzem, em parte, a estrutura e funcionalidade do cérebro humano em desenvolvimento. Muotri já havia utilizado esses minicérebros para desvendar a contribuição genética do autismo e outras doenças neurológicas, e para testar novos medicamentos. Junto com colegas brasileiros, Muotri também já havia feito uso dos minicérebros para mostrar a relação causal do vírus da Zika e o surto de microcefalia no Brasil em 2015.

Alysson Muotri com 'minicérebros', organoides cerebrais — TismooNeandertais e Denisovans

Usando uma nova versão de minicérebros funcionais, capazes de gerar sofisticadas redes neurais com oscilações semelhantes ao cérebro humano, o grupo de Muotri mostra pela primeira vez na história a reconstrução de minicérebros com variantes genéticas de espécies humanas extintas, como os Neandertais e Denisovans. 

“No passado, já havíamos comparado organoides cerebrais de humanos com de outros primatas, como o chimpanzé. No entanto, para entender as origens do cérebro moderno, precisaríamos compará-los com o dos nossos primos evolutivos mais próximos, como os Neandertais”, explica Muotri.

Há milhares de anos

Humanos modernos e os Neandertais se separaram em duas linhagens, cerca de 400 mil anos atrás. Nossos ancestrais diretos ficaram na África, enquanto que os Neandertais migraram para o norte europeu. Vestígios arqueológicos de  aproximadamente 60 mil anos atrás sugerem que os nossos ancestrais finalmente saíram da África em direção à Europa. Foi nesse momento em que as duas espécies coexistiram. Evidências genéticas recentes mostram que os dois grupos tiveram relações sexuais, mas a natureza desses encontros ainda é um mistério. O fato é que os Neandertais acabaram extintos logo após esse contato com nossa espécie. As causas da extinção dos Neandertais é motivo de muita especulação.

Tudo que sabemos dos Neandertais vem do estudo de fósseis e sítios arqueológicos. Evidências arqueológicas mostraram que os Neandertais costumavam enterrar seus mortos, produziam ferramentas e enfeites rudimentares, sugerindo um certo pensamento abstrato e simbólico. Até evidências artísticas foram atribuídas aos Neandertais, mas isso ainda é alvo de muita controvérsia. Do ponto de vista neurológico, sabemos que tinham o volume cerebral semelhante aos humanos modernos, com pequenas diferenças estruturais. O material genético, também extraído de fósseis, foi decodificado em 2010. Dos Denisovans sabemos menos ainda, pois as evidências arqueológicas são praticamente inexistentes. Tudo que sabemos dos Denisovans vem apenas de genomas encontrados em pedaços de ossos fossilizados.

 

Seleção natural

Ao comparar o genoma dos Neandertais e Denisovans com os de humanos modernos, Muotri notou diversas diferenças. Certas regiões do genoma ainda existem na população de hoje, enquanto outros fragmentos foram eliminados pela seleção natural, possivelmente por causa de alguma desvantagem adaptativa, seja na saúde, fertilidade, aparência ou cognição.

“Nosso grupo usou ferramentas genômicas para alinhar genomas dessas espécies humanas extintas e descobrir quais genes seriam únicos e não mais presentes nas atuais populações humanas. Depois, selecionamos genes que eram ativos durante o desenvolvimento neural e que estavam relacionados a doenças neurológicas. Usamos essa informação para alterar o genoma de células-tronco pluripotentes humanas e então criar organoides cerebrais (também chamados de minicérebros) ‘arquealizados’”, explica Muotri.

NOVA1

O gene escolhido é conhecido por NOVA1, um regulador mestre de outras centenas de genes durante o neurodesenvolvimento. Interessante notar que as vias controladas pelo NOVA1 já foram implicadas em autismo e esquizofrenia, ressaltando a importância deste gene.

No estudo, foi fundamental o uso de algoritmos de bioinformática para garantir que a técnica CRISPR introduzisse corretamente mutações genéticas no gene NOVA1 do genoma das células, mas sem a inserção de mutações indesejadas (chamadas de off-target) que poderiam comprometer o estudo. “Desta forma, a partir do sequenciamento do genoma das células, conseguimos comprovar que as mutações do gene NOVA1 do genoma dos neandertais foram introduzidas com sucesso no genoma de células humanas e sem a ocorrência de mutações indesejáveis” disse o pesquisador Roberto Herai, sócio fundador da Tismoo,  colaborador do estudo e coordenador do Laboratório de Bioinformática da Escola de Medicina da Pontifícia Universidade Católica do Paraná. “Essa pesquisa multicêntrica internacional também permitiu demonstrar a alta capacidade de laboratórios científicos 100% brasileiros e com grande domínio da área de bioinformática utilizando técnicas de engenharia genética como CRISPR”, finalizou Herai.

Autismo

Os resultados são impressionantes. Ao olhar para a expressão gênica durante o neurodesenvolvimento, o grupo notou alterações significativas entre os minicérebros “arquealizados” e os humanos. Em nível celular, as alterações foram ainda mais claras: alterações no padrão migratório das células progenitoras levou a formação de estruturas globulares distintas nos minicérebros carregando as variantes arcaicas. Essas alterações celulares e moleculares tiveram um impacto na formação das redes neurais: a atividade neuronal foi significativamente alterada em minicérebros com as variantes ancestrais. Isso seria uma evidência de que, possivelmente, seríamos cognitivamente distintos das outras espécies. Quais seriam essas diferenças ainda é um mistério, mas Muotri especula: “As redes neurais se comportam de forma semelhante a algumas condições neurológicas que modelamos no laboratório, como subtipos de autismo. Essa comparação pode sugerir que nossos ancestrais tivessem habilidades extraordinárias, ou dificuldades, por exemplo, em comunicação e socialização”, o que ajuda a entender as bases evolucionárias e neurológicas do Transtorno do Espectro do Autismo (TEA). Apesar das limitações intrínsecas do modelo de minicérebro (que não pode ainda ser comparado com o cérebro adulto), Muotri observa semelhanças em como alterações sutis no neurodesenvolvimento podem afetar a funcionalidade do cérebro humano. Junto com um time multidisciplinar, Muotri criou o Centro de Arquealização (https://archc.ucsd.edu) que busca identificar como outros genes também podem ter participado da evolução do cérebro humano.  

Os resultados com os organoides cerebrais podem revelar detalhes sobre a capacidade cognitiva que resultou no sucesso da espécie humana moderna e fracasso evolutivo dos Neandertais. Um grande passo para responder uma das perguntas mais fundamentais da história humana.

CRISPR

A técnica utilizada para edição do genoma foi com a enzima CRISPR-Cas9 (do inglês: Clustered Regularly Interspaced Short Palindromic Repeats — em português: repetições palindrômicas curtas agrupadas e regularmente interespaçadas), uma tecnologia que permite copiar e colar um pedaço do DNA. Para quem quiser entender a técnica, há um vídeo do canal Ciência Traduzida (quem quiser ver uma versão reduzida, assista de 3:12s a 5:50s) e o site G1 também fez um infográfico bem interessante explicando a técnica.

O estudo completo pode ser visto em https://science.sciencemag.org/content/371/6530/eaax2537.full — e também foi destaque em reportagem do jornal The New York Times (EUA).

Vídeo de créditos

No vídeo abaixo, o neurocientista Alysson Muotri nomeia mais brasileiros que participaram do estudo, destacando o principal autor, Cléber  Trujillo, e outros brasileiros. E ainda aproveita para homenagear quem Muotri atribui ser o responsável por toda sua curiosidade e criatividade: Mauricio de Sousa, com seus personagens como o cientista Franjinha, o Astronauta, o homem-das-cavernas Piteco e o André, o personagem autista da Turma da Mônica.

Assista ao vídeo no Facebook, em: https://www.facebook.com/muotri/videos/208308221003959/.

Vídeo de créditos de Alysson Muotri e homenagem a Mauricio de Sousa — Tismoo

 

[Atualizado em 12/02/2021 com vídeo de créditos]

Em mais uma missão da Nasa em parceria com a SpaceX, Alysson Muotri envia a segunda etapa de sua pesquisa para a Estação Espacial Internacional

Com lançamento do foguete da SpaceX programado para o próximo dia 5 de dezembro (2020), o neurocientista brasileiro Alysson Muotri envia para a Estação Espacial Internacional (ISS, na sigla em inglês para International Space Station) a segunda etapa da sua pesquisa com “minicérebros” (organoides cerebrais) em parceria com a Nasa, a agência espacial dos Estados Unidos.

Muotri envia 2ª etapa de sua pesquisa com minicérebros humanos para o espaço — TismooDoutor Muotri, que é cofundador da Tismoo, espera avançar nas descobertas já feitas na primeira etapa, quando enviou pela primeira vez na história, minicérebros para a ISS em julho de 2019 (veja nosso artigo aqui). “Desta vez temos dois objetivos: o primeiro é validar os dados da missão anterior,  confidenciais. O segundo, visa entender o porquê da microgravidade ‘envelhecer’ os neurônios humanos. Estamos trabalhando com algumas condições experimentais para verificar se nossa hipótese se confirma ou não”, contou o neurocientista, que é destaque no site da Nasa.

Caso a hipótese de como acontece esse envelhecimento das células do cérebro no espaço se confirme, Muotri contou que isso mudaria muita coisa em sua pesquisa. “Em caso positivo, significa que conseguiremos envelhecer neurônios no espaço para poder estudar e entender uma série de mecanismos, que até então seriam impossíveis de se estudar. A pesquisa tem impacto tanto pelos interesses da Nasa, como viagens espaciais longas e colonização interplanetária; quanto aplicações em Terra, como modelar um cérebro mais maduro. Atualmente, nosso modelo sempre representa um cérebro embrionário fetal, mas poderemos pensar em modelar um cérebro como nos primeiros anos de vida, de 1 a 5 anos, algo fantástico, pois é justamente quando acontece o diagnóstico de autismo”, narrou o professor da faculdade de medicina da Universidade da Califórnia em San Diego (EUA), com empolgação contagiante.

Evoluções

Quanto às evoluções dos equipamentos usados para esta segunda missão, houve um enorme trabalho de retaguarda envolvendo bioengenharia e alta tecnologia. O cubo autônomo da Space Tango, onde os minicérebros crescem, foi completamente redesenhado para ficar mais eficiente e acomodar mais organoides. Desta vez, ao invés de centenas, são milhares de minicérebros a caminho da ISS. “Agora, diferentes amostras podem ser coletadas e em diferentes períodos concomitantemente. Melhoramos também o software e teremos imagens muito melhores dos organoides que estarão na estação espacial, com fluorescência, reconstrução tridimensional no espaço… enfim, estou muito animado com tudo isso”, comemorou o biólogo brasileiro Alysson Muotri.

Muotri envia 2ª etapa de sua pesquisa com minicérebros humanos para o espaço — Tismoo

Equipe da Space Tango fazendo as últimas checagens nos “cubos” que abrigarão os organoides cerebrais do Muotri Lab.

A missão CRS-21 deve zarpar no dia 5 de dezembro de 2020, às 11h39 EST (horário da costa leste dos EUA), 13h39 no horário de Brasília, direto do complexo de lançamento 39A do Centro Espacial Kennedy da Nasa, no Cabo Canaveral, Flórida (EUA) — o lançamento pode ser adiado para o dia seguinte, dependendo das condições climáticas do local. Esta será a 21ª vez que a SpaceX leva suprimentos e material de pesquisa para a Estação Espacial Internacional, em parceria com a Nasa.

Vídeo da Nasa

Veja, a seguir, Muotri explicando sua pesquisa no vídeo oficial da Nasa para esta missão espacial:

 

Veja também nosso artigo de 2019: “Cofundador da Tismoo envia minicérebros para o espaço em missão da Nasa e SpaceX“.

E confira o artigo no site da Nasa: “Hearts, Airlocks, and Asteroids: New Research Flies on 21st SpaceX Cargo Mission“.

 

Missão CRS 18 leva diversos experimentos científicos, entre eles, a pesquisa que pode contribuir para o autismo

Nesta quinta-feira (25.jul.2019), a SpaceX lançou, pela 18º vez, um foguete rumo à Estação Espacial Internacional (ISS, na sigla em inglês para International Space Station). Nesta oportunidade, porém, há algo muito valioso para a pesquisa científica a respeito de autismo e outros condições neurológicas: um experimento com minicérebros humanos do laboratório do neurocientista brasileiro Alysson Muotri, professor da faculdade de medicina da Universidade da Califórnia em San Diego (UCSD) e cofundador Tismoo. Segundo Patrick O’Neill responsável pela comunicação da ISS, “esta será a primeira vez que uma carga com organoides cerebrais será lançada para a Estação Espacial Internacional”. O lançamento estava previsto para o dia anterior, mas foi adiado por más condições climáticas (saiba mais neste nosso artigo).Cofundador da Tismoo envia minicérebros para o espaço em missão da Nasa e SpaceX

O foguete foi lançado precisamente às 19h01 (horário de Brasília), conforme agendado, e, no vídeo abaixo, é possível assistir desde minutos antes do lançamento e todos os estágios até a cápsula espacial Dragon entrar em órbita. O fantástico sistema criado pela empresa de Elon Musk, a SpaceX, de fazer o foguete Falcon 9 retornar à sua base, no Cabo Canaveral, na Flórida (EUA), é de impressionar. Isso sem falar que o Falcon 9 foi utilizado apenas 2 meses atrás, na 17ª missão para a ISS e, em tão pouco tempo, já pode ser reaproveitado. Com mais este feito, a SpaceX acumula agora 44 recuperações bem sucedidas de um primeiro estágio do foguete reutilizável.

Foguete Falcon 9 da SpaceX com minicérebros de pesquisa do cofundador da Tismoo, Alysson Muotri — Tismoo

Foguete Falcon 9, na base da Nasa no Cabo Canaveral, Flórida (EUA), a poucos minutos de ser lançado pela SpaceX para a Estação Espacial Internacional (ISS) com minicérebros da pesquisa do neurocientista brasileiro Alysson Muotri, cofundador da Tismoo.

Mais de 250 pesquisas

O vídeo mostra todas as fases da volta do foguete, assim como a continuidade da missão CRS 18 com a Dragon — levando mais de 2,2 toneladas de equipamentos, que serão usados em 250 pesquisas diferentes — rumo à Estação Espacial Internacional. O conexão com a ISS aconteceu na manhã deste sábado (27), às 13h01 (horário de Brasília) — e foi transmitida ao vivo pelo canal da Nasa no Youtube.

A cápsula Dragon já foi usada em outras duas viagens para o espaço, em 2015 e 2017. Essa é a primeira vez na história que uma mesma cápsula viaja três vezes para fora da Terra.

Outra carga a bordo é o slime da Nickelodeon, com os astronautas gravando vídeos de como a “geleca” se move na microgravidade. Fora esta brincadeira, a missão leva outros experimentos científicos importantes, não só os minicérebros do Muotri Lab: há uma pesquisa de tecido orgânico para uso em bioimpressão 3D, experimentos para a fabricação de materiais para pneus, e até mesmo um experimento criado por estudantes brasileiros para testar o filtro de barro brasileiro no espaço, contando com o carvão ativo como uma alternativa ao atual uso de iodo para a filtragem da água na ISS. 

Leia mais sobre a missão e os minicérebros no nosso artigo “Minicérebros no espaço? Pra quê?“.

[Atualizado em 27/07/2019, 13h44 com informações sobre a  conexão da cápsula Dragon à ISS]

Entenda qual o objetivo do neurocientista Alysson Muotri enviar organoides de cérebro para fora do planeta

No dia 21 deste mês (julho de 2019), o neurocientista brasileiro Alysson Muotri, cofundador da Tismoo e diretor do programa de células-tronco da Universidade da Califórnia em San Diego (EUA), vai enviar minicérebros humanos para a Estação Espacial Internacional (ISS, na sigla em inglês) para auxiliar sua pesquisa com autismo entre outras questões. Os organoides serão enviados na próxima missão logística da SpaceX para o espaço, que decola do Cabo Canaveral, na Flórida (EUA), com o nome de BOARDS (Brain Organoid Advanced Research Developed in Space) com a designação UCSD-ORG01 da NASA. Saiba mais sobre minicérebros criados a partir de células-tronco humanas neste link.

Ao contrário do que acontece no laboratório de Alysson, o Muotri Lab, onde há condições ideais para o crescimento dos minicérebros, no espaço eles ficarão armazenados em frascos dentro de cubos autônomos de pouco mais de 10 por 10 centímetros, que possuem incubadoras especializadas alimentadas por bateria.Tubos de controle remoto alimentam os organoides com uma solução de nutrientes. Os astronautas planejam instalar (leia-se: “ligar na tomada” e pronto!) os cubos em um laboratório permanente na Estação Espacial Internacional. “Os cubos são autônomos, mas nós conseguimos interferir por controle remoto. Se algo der errado, temos a possibilidade de corrigir algumas coisas”, explicou o neurocientista.

Projetados por uma empresa com sede no Kentucky (EUA), chamada Space Tango, especializada em criar laboratórios em miniatura, os cubos têm micro câmeras para transmitir vídeos do crescimento dos organoides para a Terra em tempo real, além de uma série de outros sensores como temperatura e humidade.

Um grupo de minicérebros crescerá no Muotri Lab, para, quando os organoides retornarem à Terra, em agosto, os cientistas possam analisar sua expressão gênica e comparar os resultados com os dos organoides que cresceram por aqui. “Na primeira missão, eles ficarão 30 dias, quando voltam na mesma nave e parte dos cubos serão reaproveitados. Em futuras missões, queremos mantê-los no espaço por até um ano”, explicou Alysson.

Minicérebros no espaço? Pra quê? - NASA, ISS, SpeceX e UCSD / Alysson Muotri / Estação Espacial Internacional - TismooObjetivos

O projeto tem, em resumo, três grandes objetivos, segundo o próprio Alysson explica (veja vídeo abaixo).

O primeiro é desenvolver uma plataforma autônoma para manter esses organoides de cérebro crescendo sem intervenção humana, o que ajudará muito no trabalhos de testes para descoberta de novos medicamentos para várias condições, como o autismo. A segunda meta é descobrir se os minicérebros resistem à microgravidade. “No espaço, sabemos que ele estarão crescendo de uma forma diferente. Seria isso uma vantagem ou uma desvantagem para o desenvolvimento do cérebro humano?”, questiona o neurocientista.

O último — mais ambicioso — objetivo é entender os impactos da microgravidade numa futura colonização do espaço pelos seres humanos. “Entendendo um possível impacto negativo, podemos trabalhar isso aqui em Terra e preparar o cérebro humano para nascer e viver no espaço”, resume Alysson Muotri. Os detalhes do experimento também podem ser vistos no site da NASA (a agência espacial do governo dos EUA).

Tentar cultivar organoides no espaço é, na verdade, um grande avanço. Os organoides do cérebro podem realmente fornecer informações valiosas sobre as células-tronco que podem aparecer quando você tem um bebê lá”, disse, ao Spectrum News, Ferid Nassor, professor assistente de células-tronco e engenharia genética no Institut Sup’Biotech de Paris (França).

A missão é a primeira de 10 outras que estão planejadas, que, juntas, podem ajudar os cientistas a responder questões fundamentais sobre o desenvolvimento do cérebro — e, em última análise, descobrir se as pessoas podem se reproduzir com segurança fora da Terra.

Algumas pesquisas no espaço, como o famoso estudo da NASA sobre os astronautas gêmeos Scott e Mark Kelly, sugeriram que a microgravidade pode ter efeitos sutis na expressão gênica. Pesquisadores também descobriram que as células-tronco de animais se multiplicam mais rapidamente no espaço do que na Terra e estão investigando se a radiação cósmica altera seu desenvolvimento.

BOARDS - Minicérebros no espaço? Pra quê? - NASA, ISS, SpeceX e UCSD / Alysson Muotri / Estação Espacial Internacional - TismooBrasil no espaço

Os minicérebro vão na missão logística da SpaceX que deverá ser lançada às 23h32 UTC (20h32 no fuso-horário de Brasília) do dia 21 de julho de 2019. O lançamento da missão CRS-18 com o veículo de carga Dragon SpX-18, levado pelo foguete Falcon 9-074 (B1056.2) será a partir do Complexo de Lançamento SLC-40 da Estação da Força Aérea (AFS) do Cabo Canaveral, nos Estados Unidos. Além da carga logística para a tripulação permanente da ISS, a bordo da Dragon SpX-18 estarão dois pequenos satélites: RFTSat e MakerSat-1.

E tem mais coisas de brasileiros que estarão nessa mesma missão: apoiados pela NASA e pela SpaceX, dois projetos de estudantes brasileiros — um de São Paulo e outro de Santa Catarina — para testar interações físicas e químicas na Estação Espacial Internacional. Ambos os projetos, participantes do programa Student Spaceflight Experiments Program (SSEP) do Centro Nacional para Educação Científica para Terra e Espaço, podem contribuir para o futuro da vida humana fora da Terra: um quer melhorar a proteção de seres humanos da radiação em construções no espaço e outro tem como objetivo construir um sistema mais apurado para filtração de água para consumo humano em espaçonaves.

Vídeos