Posts

Importante portal de ciência dos EUA destaca o trabalho e a trajetória do cofundador da Tismoo com organoides de cérebro em pesquisas de TEA

Por Hannah Furfaro, do Spectrum News,
(versão em português: Francisco Paiva Junior)

É quase pôr do sol, Alysson Muotri entra em uma sala pequena e desordenada em seu amplo laboratório no Sanford Consortium for Regenerative Medicine, em La Jolla (bairro da cidade de San Diego), Califórnia, nos Estados Unidos. Uma incubadora do tamanho de uma minigeladeira abriga moradores incomuns — e ele quer apresentá-los:

“Esta é a fábrica de mini-cérebros”, diz Muotri, abrindo um sorriso. Seu colega segura uma bandeja de vidro contra a luz, e esferas cor-de-rosa do tamanho de um caviar se destacam.

As esferas são bolas 3D de células humanas, chamadas organoides cerebrais [ou minicérebros] — e Muotri passa seus dias pensando em maneiras de usá-las para estudar a complexidade do cérebro humano.

As células dessas esferas formam camadas, exatamente como os cérebros humanos, e mostram atividade cerebral, passando sinais elétricos de uma célula para a outra. Mas eles não têm a complexidade anatômica de um cérebro real. Eles também não podem pensar ou sentir — pelo menos ainda.

Muotri induz as células-tronco a se desenvolverem em esferas de cerca de 1 milhão de células dos tipos vistos no cérebro. Ele pretende entender como esses “quase-cérebros” amadurecem — e como seus padrões de atividade combinam com os de um cérebro humano. Na medida em que o fazem, ele espera usá-los para desvendar o que dá errado no autismo e nas condições relacionadas — e encontrar pistas para tratamentos.

Muotri criou seus primeiros organoides cerebrais em 2014, com células-tronco do pai de um menino autista. Dois anos depois, ele descobriu que os organoides feitos com células-tronco de crianças autistas têm uma dinâmica de rede diferente daquela dos controles neurotípicos. Ele também fez organoides de células que carregam o DNA neandertal e outros infectados pelo Zika vírus. Em julho, ele ajudou a enviar os primeiros organoides cerebrais ao espaço. O objetivo final, diz ele, é criar organoides que possam aprender.

Alguns críticos afirmam que Muotri é propenso a superestimar seus dados, mas a maioria de seus colegas admira sua determinação em forçar os limites dessa tecnologia, mesmo quando esse trabalho é controverso.

“Seu nome carrega muito peso na tentativa de fazer coisas com organoides que ninguém ainda fez”, diz Ferid Nassor, professor assistente de células-tronco e engenharia genética no Institut Sup’Biotech de Paris, na França. “Ele está realmente tentando forçar os limites do que pode ser feito”.

O otimismo de Muotri conquistou muitos céticos, de fato — e lhe rendeu vários prêmios e muitos milhões de dólares em doações.

Primeira luz:

Muotri estava preocupado em como as coisas funcionam desde sua infância. Ele se lembra de seu primeiro “pensamento profundo”, por volta dos 7 anos, quando tentou descobrir como funciona uma lâmpada: “minha ideia era que a lâmpada não estava lá para enviar luz, mas para sugar a escuridão”, diz ele.

Quando adolescente, em São Paulo, muitas vezes mergulhava na natureza, capturando vaga-lumes em jarras para “ter luz para sempre”. Ele criou uma sequência de fotos em time -lapse vaga-lumes piscando suas luzes — um dos muitos “projetos” que o fizeram receber o apelido de “o cientista” da família.

Como estudante de graduação na Unicamp (Universidade de Campinas), ele se destacou em biologia molecular, embora estivesse sempre interessado no cérebro — e na memória em particular. Mas o Brasil não era um celeiro de pesquisas em neurociência, então Muotri estudou câncer para seu trabalho de pós-graduação na USP (Universidade de São Paulo), aprendendo os fundamentos da biologia celular.

Enquanto estava na universidade, Muotri tentou desenvolver uma terapia genética tópica para o xeroderma pigmentoso, uma doença de pele rara que causa extrema sensibilidade à luz solar e muitas vezes leva ao câncer. O projeto exigia a confecção de modelos de pele em um prato. Ele viajou para o laboratório do biólogo Alain Sarasin na França em 2001 para aprender uma técnica que envolve a mistura de células-tronco da pele com “células alimentadoras” que fornecem suporte à medida que as células-tronco se multiplicam e produzem camadas de pele.

Mas ele logo percebeu que, se quisesse seguir a neurociência, precisaria deixar o Brasil completamente. Em 2002, como pesquisador de pós-doutorado, ele se juntou à equipe de Fred Gage, em San Diego, na Califórnia (EUA), um papa da neurociência do desenvolvimento.

“Ele gosta de estar lá fora no limite”, diz Gage, presidente do Instituto Salk de Estudos Biológicos, em La Jolla (San Diego), na Califórnia (EUA).

Dores crescentes:

A transição da pele para o cérebro teve uma curva de aprendizado íngreme para Muotri. Além disso, as células-tronco embrionárias estavam em oferta limitada, assim como o financiamento para pesquisa, por causa de uma lei federal de 2001 que proibia fundos públicos para estudos usando essas células.

No laboratório de Gage, o trabalho de Muotri foi confinado a uma sala especialmente equipada, apoiada por doadores privados. O plano era transformar células-tronco em neurônios, mas isso não era fácil.

“Ninguém sabia exatamente como fazer isso”, diz Muotri. Simplesmente manter as células-tronco vivas era um desafio.

Após três anos de esforços, Muotri relatou em 2005 que ele e seus colegas haviam transplantado células-tronco embrionárias humanas para o cérebro de embriões de camundongos. Eles encontraram neurônios humanos em funcionamento integrados em redes no cérebro dos camundongos recém-nascidos. [1]

Na pressa, Muotri perdeu um passo: não pediu a aprovação do conselho de revisão institucional do Instituto Salk, que examina a pesquisa humana em busca de danos potenciais. Ele recebeu uma advertência.

“Esta foi a minha primeira conexão com essas questões éticas”, diz Muotri. “Aprendi duas lições: havia muitas pessoas irritadas com esses experimentos e muitas pessoas felizes com eles”.

Entre as pessoas felizes, estava o biólogo celular Larry Goldstein, que estava convencido de que o trabalho de Muotri iria acelerar a área de células-tronco.

“Eu bati na trave algumas vezes; conheço muitos cientistas e sei quais são fora do comum em sua criatividade, motivação e seus insights — [Muotri] é um deles ”, diz Goldstein, diretor científico do Sanford Consortium for Regenerative Medicine.

Três anos depois, Goldstein recrutou Muotri para se juntar a ele na Universidade da Califórnia, em San Diego (EUA), onde ele é professor.

Spectrum News: os planos audaciosos com minicérebros do pesquisador de autismo Alysson Muotri — Tismoo

Planos arrojados: enquanto alguns debatem os méritos de suas ambições científicas, Alysson Muotri gosta de estar no limite.

Laços familiares:

Em seu novo laboratório, Muotri se afastou das células-tronco embrionárias e de seus problemas éticos, para um tipo chamado “células-tronco pluripotentes induzidas”, que são feitas usando pele e outras células do corpo como ponto de partida.

Em 2010, ele relatou que as células-tronco produzidas a partir das células da pele de pessoas com síndrome de Rett, uma condição relacionada ao autismo, geram menos neurônios do que as pessoas comuns. Uma entrevista na televisão sobre esse trabalho chamou a atenção de Andrea Coimbra, uma brasileira cujo filho, Ivan, então com 5 anos, tem autismo severo.

“Decidi dizer-lhe que passei a viver melhor depois de conhecer o seu trabalho e a sua pesquisa”, lembra Andrea. Após trocar e-mails por um ano, Andrea e Alysson se conheceram em uma conferência científica no Brasil — e se apaixonaram. Eles se casaram em 2016.

Ao conhecer Ivan, Muotri se tornou cada vez mais impelido em encontrar maneiras de traduzir seu trabalho em terapias para o autismo.

Organoides e células-tronco não são as únicas ferramentas que Muotri está usando para estudar o autismo e buscar terapias. Em trabalho não publicado, ele encontrou diferenças na atividade neuronal em organoides cultivados a partir de células com a mutação da síndrome de Rett. Após quatro meses de crescimento, quando os organoides são do tamanho de sementes de mostarda, suas células exibem um padrão elétrico semelhante ao observado em bebês prematuros [2]. Isso sugere, diz ele, que os organoides são bons modelos de desenvolvimento humano.

Alguns pesquisadores dizem que esta conclusão é precipitada.

“Encontrar atividade intermitente nas redes neurais não significa que seja um modelo de cérebro prematuro”, diz o neurofisiologista Sampsa Vanhatalo, que liderou o trabalho com bebês prematuros.

Muotri não deixa as críticas negativas o abalar. Não só isso, ele está de olho em um projeto ainda mais ambicioso: criar um organoide que possa aprender.

A idéia de um aprendizado organoide ou de ter consciência, todavia, provoca ceticismo de alguns especialistas.

Sugerindo que as esferas de células têm a capacidade de recapitular qualquer tipo de pensamento complexo passa dos limites, diz a especialista em organoides Flora Vaccarino, professora de neurociência na Universidade de Yale (EUA).

Mas outros dizem que estabelecer tais metas força os limites da ciência de maneira a melhorá-la.

“À medida que a ciência avança, deixa perguntas que fazem as pessoas pensarem, e fazerem uma pausa”, diz Hongjun Song, professor de neurociência da Universidade da Pensilvânia (EUA). “Isso é muito bom para toda a área”.

Enquanto outros debatem os méritos de sua ambição, Muotri está avançando. Um vídeo armazenado em seu celular apresenta um robô de 1 metro de largura, envolto em fios de neon, indo e voltando pela sala. Invisível, o manipulador de marionetes biológico do robô direciona todos os seus movimentos: os membros do robô se movem comandados por um computador que, por sua vez, recebe sinais de um minicérebro em uma incubadora.

O robô pisa aleatoriamente, muitas vezes esbarrando nas paredes, sugerindo que os sinais não são coordenados. Algum dia, diz Muotri, ele criará organoides que produzem sinais significativos. Com o feedback sensorial do robô (por exemplo, ao atingir um obstáculo), o organoide pode alterar seus padrões de disparo — “aprender”, isto é, direcionar o robô para desviar do obstáculo.

“Talvez ele tenha alguma carta na manga”, diz Nassor. “Eu acredito que se alguém puder realmente fazer algo assim, será no laboratório do Muotri”.

 

Tradução do original “Autism researcher Alysson Muotri’s audacious plans for brain organoids“, em inglês, publicado por HANNAH FURFARO na Spectrum News (EUA), em 12.agosto.2019.


Referências:

  1. Muotri A.R. et al. Proc. Natl Acad. Sci. 102, 18644-18648 (2005) PubMed 
  2. Stevenson N.J. et al. Sci. Rep. 7, 12969 (2017) PubMed
Mapeamento genético pode ser uma das ferramentas mais importantes no diagnóstico do autismo, afirmam cientistas - Tismoo

Se você acompanha o nosso blog há algum tempo, com certeza já viu por aqui textos sobre mapeamento e sequenciamento genético. Então por que estamos te chamando pra falar disso mais uma vez? Porque temos novidade pra contar! Mas antes vamos te explicar melhor o que significam esses termos, como a genética funciona na prática e o que a ciência vem descobrindo sobre a relação dos genes com o Transtorno do Espectro do Autismo (TEA).

Um estudo recente conduzido por pesquisadores do New York Genome Center usando a metodologia de sequenciamento do genoma completo (WGS, sigla para o termo em inglês Whole Genome Sequencing), analisou o genoma de 2.064 indivíduos de 516 famílias sem histórico anterior de autismo, porém com um membro autista, e revelou que variações genéticas não herdadas — conhecidas como “mutações de novo” — podem contribuir para o autismo (Turner et al, 2017). Em janeiro outro estudo também demonstrou a importância das variantes genéticas “de novo” na arquitetura genética complexa do TEA, analisando 262 trios de indivíduos de origem japonesa com TEA e seus pais neurotípicos (Takata et al., 2018).

Apesar do número de indivíduos analisados ainda ser pequeno, os estudos epidemiológicos têm demonstrado cada dia mais que os fatores genéticos são os mais importantes na determinação das causas e origens do TEA. Entretanto, a genética do TEA é considerada extremamente heterogênea, uma vez que esses indivíduos possuem variantes comuns e raras (Gaugler et al., 2014). Mas, antes de falarmos da genética propriamente dita, vamos entender um pouco como ela funciona nos seres humanos e o que são essas alterações.

O corpo e os genes

Nosso corpo é formado por trilhões de células. O genoma está no núcleo, onde temos os cromossomos que são “novelos” compactados de DNA. Cada pessoa possui 46 cromossomos divididos em 23 pares, dos quais 22 são autossômicos (ou seja, determinantes das nossas características em geral) e 1 é sexual (determina se a pessoa é do sexo masculino ou feminino). O DNA é a sopa de letras, formada pelos nucleotídeos ACGT. A sequência específica dessas letras é o que chamamos de genes. A grosso modo, os genes são responsáveis pela produção das proteínas, substâncias importantes para o funcionamento das células.

Crédito: GenoVive Brasil

Se o genoma humano fosse um livro, os cromossomos seriam os capítulos, os genes seriam as frases e a sequência de DNA seria as letras e as sílabas. Dessa forma, dependendo da alteração, nós poderíamos mudar apenas uma letra e ainda continuar entendendo o que está sendo dito ou então mudar todo o sentido de uma frase e não entender mais o que ela quer dizer. Por exemplo, se trocarmos o “t” na palavra “televisão” por um “p”, teremos a palavra “pelevisão”; apesar de diferente conseguimos entendê-la. Mas se pensarmos na palavra “conserto” e trocarmos o “s” por “c”, teremos “concerto”, uma palavra distinta, que carrega outro significado. Nesse caso, uma única letra causou uma grande mudança de sentido. No nosso organismo também é assim que acontece: algumas mudanças não têm efeitos; outras, entretanto, podem fazer com que o funcionamento das nossas células seja completamente afetado.

As mudanças na sequência de DNA são chamadas de variante genética. São essas mudanças que os cientistas e profissionais de saúde analisam quando um sequenciamento genético de última geração (como exoma ou genoma) é realizado. Dessa forma, é sempre importante lembrar da relevância da variante genética e não apenas do gene, pois às vezes uma troca pode não ocasionar nenhum defeito no funcionamento do organismo.

O TEA é um bom paradigma para mostrar a complexidade das condições do desenvolvimento neurológico, pois ele apresenta um amplo espectro de características clínicas e fatores genéticos variados e complexos, com algumas variantes herdadas e outras ocorrendo pela primeira vez (lembra das “mutação de novo”?). As formas não-sindrômicas de TEA, ou seja, aquelas não associadas a nenhuma síndrome, são consideradas como herança multifatorial. Nesse caso, fatores de risco genéticos e ambientais podem desempenhar um papel e o efeito aditivo desses fatores é variável, podendo ter mais ou menos impacto ao atingir um limite crítico, levando ao TEA (Hoang, Cytrynbaum, Scherer, 2017). Com isso, podemos dizer que o TEA é um transtorno multigênico e multifatorial envolvendo fatores ambientais, mas o risco é majoritariamente genético. Entretanto, o diagnóstico do autismo é clínico.

Os genes e o TEA

A evolução do conhecimento genético permitiu que muitos genes envolvidos no TEA sejam identificados. Atualmente, de acordo com a Simons Foundation, temos 722 genes descritos, porém muitos ainda são desconhecidos. Algumas desordens neurológicas e psiquiátricas não são fruto de alterações em um único gene. Ao contrário, envolvem distúrbios moleculares complexos em múltiplos genes e no controle da expressão gênica, como é o caso do TEA. Por essas razões, é um desafio definir genes e respectivas variantes genéticas de relevância clinica associadas ao TEA. Cada indivíduo é clinicamente único, por isso o aconselhamento genético com profissionais experientes e capacitados é de grande importância.

O mapeamento genético vem se tornando o primeiro teste a ser recomendado pela Academia Americana de Genética Médica e Genômica no estudo de crianças com suspeita de síndromes genéticas, atraso do desenvolvimento neuropsicomotor, atraso do crescimento, atraso de linguagem, anormalidades congênitas e Transtorno do Espectro do Autismo. Exames como o CGH-array esclarecem e direcionam em torno de 20% as suspeitas de síndromes e estão no rol da ANS (Agência Nacional de Saúde). O CGH-Array ou hibridização genômica comparativa baseada em microarranjos é uma metodologia de citogenética molecular capaz de identificar alterações cromossômicas desbalanceadas (como duplicações, deleções e/ou microdeleções) que não podem ser vistas através do exame de cariótipo convencional.

O sequenciamento do genoma completo é o método que fornece informações genéticas completas dos pacientes. Em países desenvolvidos ele já vem sendo utilizado como segundo exame a ser realizado após o CGH-array. Apesar de ter um custo ainda elevado, ele está rapidamente se tornando mais acessível. De acordo com o Dr. Evan Eichler, pesquisador do Howard Hughes Medical Institute (HHMI), dentro de 5 ou 10 anos o sequenciamento do genoma completo pode ser uma ferramenta muito importante no diagnóstico do autismo.

No Brasil, o sequenciamento completo do genoma já vem sendo realizado aqui na Tismoo com o mesmo rigor tecnológico dos trabalhos realizados no exterior e citados neste artigo. Começando o ano com o pé direito, nossa equipe está comemorando esse mês os avanços tecnológicos que culminaram na diminuição do valor do mapeamento genético, o que vai ao encontro da afirmação do Dr. Evan Eichler: o sequenciamento genético se tornará cada dia mais acessível e, no futuro próximo, poderá ser uma ferramenta muito útil para o diagnóstico do TEA.

Referências:

  • Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., & Ripke, S. Most genetic risk for autism resides with common variation.Nature genetics. 46(8), 881–885, 2014.
  • Hoang, N., Cytrynbaum, C., & Scherer, S. W. Communicating complex genomic information: A counselling approach derived from research experience with Autism Spectrum Disorder. Patient education and counseling. pii: S0738–3991(17)30468- 8.2017.
  • Takata, A., Miyake, N., Tsurusaki, Y., Fukai, R., Miyatake, S., Koshimizu, E., … & Ishizuka, K. (2018). Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder. Cell Reports, 22(3), 734–747.
  • Turner, T. N., Coe, B. P., Dickel, D. E., Hoekzema, K., Nelson, B. J., Zody, M. C., … & Darnell, R. B. (2017). Genomic patterns of de novo mutation in simplex autism. Cell, 171(3), 710–722.