Posts

Cientistas da Tismoo se posicionam sobre o caso das bebês geneticamente modificadas

,
Edição genética de bebês na China usando Crispr-cas9 - cientistas da Tismoo se posicionam

Pesquisador chinês diz ter feito alteração genética em embriões com Crispr-cas9 para ficarem imunes ao HIV

O cientista chinês He Jiankui, de 34 anos, da universidade SUSTech (Universidade de Ciência e Tecnologia do Sul da China), em Shenzhen, na China, em 25 de novembro de 2018, anunciou (por um vídeo no YouTube) que havia editado o gene CCR5 em dois embriões humanos, com o objetivo de que os bebês não expressem um receptor para o vírus HIV. Ele diz serem duas meninas, gêmeas, que He chama de “Lulu” e “Nana”, nascidas poucas semanas antes do polêmico anúncio do cientista. A pesquisa foi duramente criticada em todo o mundo, um experimento considerado perigoso e prematuro. No dia 29 de novembro, as autoridades chinesas suspenderam todas as atividades de pesquisa de He, afirmando que “suas pesquisas violavam leis chinesas”.

Ele afirmou que os pais envolvidos não quiseram ser identificados ou entrevistados, e não disse onde eles moram ou onde o trabalho foi feito. A técnica utilizada foi com a enzima Crispr-cas9 (do inglês: Clustered Regularly Interspaced Short Palindromic Repeats — em português: repetições palindrômicas curtas agrupadas e regularmente interespaçadas), uma tecnologia que permite copiar e colar o DNA. Para quem quiser entender a técnica, há um vídeo do canal Ciência Traduzida (quem quiser ver uma versão reduzida, assista de 3:12s a 5:50s) e o site G1 também fez um infográfico bem interessante explicando a técnica.

Opiniões

Cientistas cofundadores da Tismoo se posicionaram a respeito da possível edição genética de embriões humanos e seus desdobramentos.

Para o cientista Roberto Hiroshi Herai, “a técnica Crispr-cas9 já demonstrou que é capaz, sem sombra de dúvidas, de modificar o genoma humano de forma eficiente, entretanto é possível que ela também introduza mutações indesejáveis, que é o que chamamos de variações off-target”, comenta o pesquisador e professor da Escola de Medicina da PUCPR (Pontifícia Universidade Católica do Paraná). “O fato de comprovadamente ainda não termos controle absoluto de como evitar essas possíveis variantes genéticas ocasionadas pelo efeito off-target da técnica Crispr-cas9, faz com que várias delas sejam potencialmente inseridas em regiões do genoma que ainda desconhecemos se há ou não função”, explicou Herai, que é doutor em genética e biologia molecular e fez pós-doutorado em genética de microorganismos e em medicina celular e molecular.

Alysson Renato Muotri, professor da faculdade de medicina na Universidade da Califórnia em San Diego (EUA), entende que toda tecnologia de ponta passa por um período crítico e o feito do pesquisador chinês aconteceria cedo ou tarde. “Na década de 50, transplante de células-tronco para tratar doenças do sangue tinham uma eficiência de 3% e muitos pacientes morriam durante o procedimento. Hoje, a eficácia é cerca de 90% e raramente letal. O mesmo aconteceu com transplante de órgãos, como coração, ou mesmo sangue e até mesmo na fertilização in vitro. Existe um custo a ser calculado na implementação de qualquer procedimento médico original. Por isso, fazemos testes pré-clínicos. Na década de 90, um garoto morreu de forma desnecessária ao participar de um ensaio clínico para terapia gênica. Esse incidente atrasou a ciência por mais de uma década e somente hoje em dia, sabemos como controlar melhor os vetores virais usados nesse tipo de terapia”, explicou ele.

“O caso da edição genética em bebês seria mais semelhante ao caso da terapia genética. Hoje em dia, temos como melhorar a eficácia das enzimas usadas no processo em laboratório a fim de evitar alterações no DNA indesejadas, mas isso leva tempo. O pesquisador chinês não usou a tecnologia mais avançada e segura. Essas alterações off-targets no genoma podem causar doenças ainda não antecipadas, como câncer no adulto. Além disso, temos o problema da transmissão da alteração genética pelas células germinativas. Os dois bebês chineses terão essas alterações presentes nos óvulos das duas meninas. Futuras gerações derivadas desses bebês também carregarão essas alterações e eventuais efeitos indesejados. Por isso mesmo, esse tipo de edição genética em embrião humano é, por enquanto, proibida nos EUA. No entanto, a edição genética em humanos será inevitável. Conforme iremos resolvendo as questões experimentais, a parte ética também vai se ajustando e, eventualmente, o procedimento entrará em clínica para alguns casos mais graves”, esclareceu Muotri, doutor em genética e com pós-doutorado em neurociência e células-tronco.

A professora de embriologia e genética da USP (Universidade de São Paulo) Patrícia Beltrão Braga, também se posicionou sobre a polêmica: “A edição genética de embriões humanos não é permitida por nenhum comitê de ética no mundo, pois a técnica precisa passar por alguns testes para que seja considerada segura para aplicação em seres humanos. Ainda é cedo para isso. Além do mais, a edição de um embrião sadio através da remoção de um gene não se justifica per se. No caso das gêmeas, o gene removido é  utilizado para a entrada do vírus HIV, o que não justifica a sua remoção, já que as chances de uma pessoa pegar o vírus são baixas se tomadas as devidas precauções. Além disso, existe medicação para combater os efeitos da infecção viral. Por outro lado, não sabemos as consequências a médio e longo prazo da remoção desse gene para o organismo humano”, opinou a cientista, que tem mestrado em virologia, doutorado em biologia molecular e fez pós-doutorado em biologia celular e outro em neurociência.

Mais informações

O caso ainda rende muitas controvérsias ao redor do mundo e outras informações podem ser obtidas online nos seguintes endereços:

Vídeo

Veja, abaixo, o vídeo explicativo sobre a técnica de edição de DNA, Crispr-cas9, do canal Ciência Traduzida:

Mutações genéticas no DNA da mitocôndria estão diretamente associadas com Transtorno do Espectro do Autismo

,
Mutações genéticas no DNA da mitocôndria estão diretamente associados com autismo - Tismoo

Por Roberto Herai

Mutações genéticas no DNA da mitocôndria estão diretamente associados com autismo - Tismoo

Clique para ampliar

As mitocôndrias são organelas responsáveis pela respiração celular, produção de energia na forma de ATP, morte programada das células (apoptose) e pela regulação de diversos outros processos celulares. Essas organelas também desempenham importantes funções do cérebro, pois permitem o correto desenvolvimento do sistema nervoso central, bem como garantem que a alta demanda energética desse tecido seja suprida. A organela também possui seu próprio material genético, o DNA mitocondrial, a partir do qual são codificadas proteínas importantes para a mitocôndria desempenhar corretamente suas funções. Desta forma, falhas no funcionamento da organela, ou até mesmo mutações no DNA mitocondrial, podem causar problemas celulares que possam ocasionar transtornos neurológicos.

Em um recente trabalho que conduzi com a mestranda Ana Carolina Pinto da Cruz — no Programa de Pós-graduação em Ciências da Saúde da Escola de Medicina da Pontifícia Universidade Católica do Paraná (PUCPR) —, foi criado um catálogo de variantes genéticas mitocondriais com transtornos neurológicos. Tais transtornos incluem síndromes do neurodesenvolvimento, doenças neurodegenerativas e desordens psiquiátricas. Os transtornos neurológicos compreendem um grupo bastante heterogêneo de síndromes e doenças associadas com fenótipos cognitivos e comportamentais, tais como transtornos do espectro do autismo (TEA), síndrome de Asperger, doença de Huntington e síndrome de Leigh. A partir da pesquisa, descobrimos que aproximadamente 79% de todas as variantes genéticas presentes no DNA mitocondrial e associadas com transtornos neurológicos são do tipo SNP (mutação de um único nucleotídeo).

Leia mais

Sequenciamento completo do genoma pode impulsionar busca por fatores de risco do autismo

,
sequenciamento de genoma - DNA - Tismoo

Mapeamentos do genoma de famílias que possuem uma única pessoa com Transtorno do Espectro do Autismo (TEA) podem revelar mutações espontâneas. Entenda.

Desde o início do ano temos falado bastante sobre a importância do sequenciamento completo do genoma para os estudos e investigações sobre o autismo. Contribuindo para aumentar os dados disponíveis, cientistas liberaram no ano passado quase 7 mil sequências de genoma total de 1.800 famílias que possuem uma única criança autista entre seus membros. As informações compartilhadas revelaram mutações espontâneas, ou seja, que não foram herdadas dos pais (também conhecidas como “mutações de novo”), contribuindo na busca por fatores de risco do TEA e possibilitando novas descobertas.

Financiada pela Fundação Simons, a pesquisa complementou o depósito de amostras genéticas do projeto Simons Simplex Collection (SSC), que já conta com dados de mais de 2.300 crianças autistas e 9 mil famílias. Esse projeto é focado na revelação de mutações espontâneas, por isso a nova contribuição foi tão importante. As análises dos exomas também permitiram a identificação de dezenas de novos genes candidatos para o autismo, que serão examinados em um outro momento.

Lançados há mais de 10 anos, os estudos genômicos da Fundação Simons foram facilitados pelo avanço da tecnologia e pela redução de custos dos sequenciamentos, que vêm se tornando cada vez mais acessíveis. Isso dá aos pesquisadores uma visão mais completa, permitindo que mapeiem mais genomas e, consequentemente, pesquisem regiões intergênicas pouco exploradas.

Próximos passos

Depois da coleta de dados, vem um esforço ainda maior: continuar reunindo sequenciamentos para avaliar quais variantes nas regiões não-codificantes do genoma são prejudiciais. Para isso os cientistas precisam não apenas de milhares de sequenciamentos, mas de grandes esforços de informática, já que todas as análises são feitas em computadores. O estudo mencionado acima acrescentou 7 mil sequências, mas talvez isso não seja suficiente.

“O recurso genômico é fundamental para avaliar outras formas de variação genética que não podem ser acessadas por exomas”, afirma o professor de ciências do genoma da Universidade de Washington (Seattle), Evan Eichler. Para aumentar a base de dados, uma das estratégias é buscar o auxílio de pesquisadores de outras áreas, como Ciência da Computação e Estatística. Enquanto isso não acontece, aqueles que tiverem interesse em acessar os dados para estudar o autismo ou uma condição relacionada podem se inscrever aqui.

(Com informações do site Spectrum News).

Como o seu sequenciamento pode ajudar a ciência

Como o seu sequenciamento pode ajudar a ciência - Tismoo

Quatro letras: A, T, C, G. Três bilhões de combinações entre elas formam o DNA de uma pessoa. Como cada ser humano é único, essa sequência não se repete — mesmo gêmeos idênticos são geneticamente diferentes. Se os transtornos do espectro autista têm grande parte de sua origem em mutações genéticas, descobrir onde estão as falhas no genoma de indivíduos autistas é uma estrada longa e promissora para a ciência. Por quê? Algumas doenças são causadas por uma mutação específica, ou seja, depois de mapeado esse pedacinho específico do DNA que causa o problema, o diagnóstico é conclusivo. No caso do autismo, algumas centenas de DNA já foram registradas como causadores do transtorno. E os pesquisadores estimam que esse número possa chegar à casa dos milhares. Isso explica porque os autistas são tão diferentes entre si — essa variedade nas mutações, combinada a fatores externos, se manifesta de diversas formas.

Alguns projetos ao redor do mundo, como o Aut10K, se dedicam a construir uma base de dados com as informações genéticas de famílias afetadas pelo autismo. Em parceria com o Google, o instituto Autism Speaks está sequenciando o genoma de 10 mil pessoas. Esse é um grande passo para a ciência porque com o Google Cloud será possível não apenas armazenar a informação (o DNA de uma pessoa equivale ao espaço de 50 filmes em alta definição em um computador ou 100 gigabytes), como também compartilhar esses dados com outros pesquisadores.

E tudo isso sem perder de vista a privacidade das famílias, os cientistas usam um sistema de anonimato para proteger a identidade dos participantes. Dessa forma, crescem os registros das mutações relacionadas ao autismo para que a comunidade científica use em diagnósticos e pesquisas.

A bioinformática está mudando a forma dos cientistas entenderem o autismo. Usando o big data — grande sistema que cruza informações — é possível criar algoritmos que não apenas indicam as mutações conhecidas, mas também fazer previsões de onde aquelas ainda não descobertas podem estar. Cada pessoa sequenciada em projetos como esse são como grãos de areia em uma praia. O conjunto delas dá a ciência informações que podem fazer a diferença na forma como o autismo é entendido e tratado. Quer fazer o seu? Entre em contato com a Tismoo.